This permits a hash state to be cloned in the middle of being used, so
that multiple strings with the same prefix can be hashed without
having to repeat all the computation over the prefix.
Having done that, we'll also sometimes need to free a hash state that
we aren't generating actual hash output from, so we need a free method
as well.
Now that we have modes in which the MAC verification happens before
any other crypto operation and hence will be the only thing seen by an
attacker, it seems like about time we got round to doing it in a
cautious way that tries to prevent the attacker from using our memcmp
as a timing oracle.
So, here's an smemeq() function which has the semantics of !memcmp but
attempts to run in time dependent only on the length parameter. All
the MAC implementations now use this in place of !memcmp to verify the
MAC on input data.
This causes the initial length field of the SSH-2 binary packet to be
unencrypted (with the knock-on effect that now the packet length not
including MAC must be congruent to 4 rather than 0 mod the cipher
block size), and then the MAC is applied over the unencrypted length
field and encrypted ciphertext (prefixed by the sequence number as
usual). At the cost of exposing some information about the packet
lengths to an attacker (but rarely anything they couldn't have
inferred from the TCP headers anyway), this closes down any
possibility of a MITM using the client as a decryption oracle, unless
they can _first_ fake a correct MAC.
ETM mode is enabled by means of selecting a different MAC identifier,
all the current ones of which are constructed by appending
"-etm@openssh.com" to the name of a MAC that already existed.
We currently prefer the original SSH-2 binary packet protocol (i.e. we
list all the ETM-mode MACs last in our KEXINIT), on the grounds that
it's better tested and more analysed, so at the moment the new mode is
only activated if a server refuses to speak anything else.
briefly worried that it might not be doing what I thought it was
doing, but examining these diagnostics shows that it is after all, and
now I've written them it would be a shame not to keep them for future
use.
[originally from svn r9938]
zero but does it in such a way that over-clever compilers hopefully
won't helpfully optimise the call away if you do it just before
freeing something or letting it go out of scope. Use this for
(hopefully) every memset whose job is to destroy sensitive data that
might otherwise be left lying around in the process's memory.
[originally from svn r9586]
under SSH-2, don't risk looking at the length field of an incoming packet
until we've successfully MAC'ed the packet.
This requires a change to the MAC mechanics so that we can calculate MACs
incrementally, and output a MAC for the packet so far while still being
able to add more data to the packet later.
[originally from svn r8334]
discussed. Use Barrett and Silverman's convention of "SSH-1" for SSH protocol
version 1 and "SSH-2" for protocol 2 ("SSH1"/"SSH2" refer to ssh.com
implementations in this scheme). <http://www.snailbook.com/terms.html>
[originally from svn r5480]
malloc functions, which automatically cast to the same type they're
allocating the size of. Should prevent any future errors involving
mallocing the size of the wrong structure type, and will also make
life easier if we ever need to turn the PuTTY core code from real C
into C++-friendly C. I haven't touched the Mac frontend in this
checkin because I couldn't compile or test it.
[originally from svn r3014]
error messages are currently wrong, and Pageant doesn't yet support
the new key type, and I haven't thoroughly tested that falling back
to password authentication and trying invalid keys etc all work. But
what I have here has successfully performed a public key
authentication, so it's working to at least some extent.
[originally from svn r973]