I suspected there'd be one or two mistakes introduced by that
transcription in spite of the test suite, and there were!
CONF_mouseautocopy had its default labelled as int rather than bool,
because it didn't _look_ boolean to my conversion scripts or to my
eyeballs - but its default value is actually a macro that expands to
'true' or 'false' (depending on platform), so it is really.
And CONF_supdup_ascii_set, conversely, is an int which had its default
labelled as bool, which was due to my conversion scripts faithfully
transcribing the same confusion in the original code.
Ahem. Of course I've been running it interactively until now, so I
never noticed that I'd forgotten to fill in that important point. But
now it's run as part of my build, it should make sure to fail if it
fails.
The new ConfKeyInfo structure now includes some fields indicating how
to load and save each config option: what keyword it's stored under in
the saved settings file, and what its default value should be set to
when loading a session that doesn't mention it. (Including, of course,
loading the null session at program startup.)
So far, this only applies to the saved settings that are sufficiently
simple: a single integer, string or boolean value whose internal
format matches its storage format, or an integer value consisting of a
finite enumeration with a fixed mapping between its internal and
storage formats. Anything more difficult than that - mappings,
variable defaults, config options tied together, options that still
support a legacy save format alongside the up-to-date one, things
under #ifdef - hasn't yet been tampered with.
This allows a large amount of repetitive code in settings.c to be
deleted, and replaced by simple loops over the conf_key_info array
doing all the easy work. The remaining manual load/save code per
option is all there because it's difficult in some way.
The transitional test_conf program still passes after this upheaval.
This array is planned to be exposed more widely, and used for more
purposes than just checking the types of Conf options. In this commit
it just takes over from the two previous smaller arrays, and adds no
extra data.
This aims to be a reasonably exhaustive test of what happens if you
set Conf values to various things, and then save your session, and
find out what ends up in the storage. Or vice versa.
Currently, the test program is written to match the existing
behaviour. The idea is that I can refactor the code that does the
loading and saving, and if this test still passes, I've probably done
it right.
However, in the long term, this test will be a liability: it's yet
another place you have to add every new config option. So my plan is
to get rid of it again once the refactorings I'm planning are
finished.
Or rather, I'll get rid of _that_ part of its functionality. I also
suspect I'll have added new kinds of consistency check by then, which
won't be a liability in the same way, and which I'll want to keep.
FontSpec is completely different per platform; not only is the
structure type different, not only are the behind-the-scenes
implementations of copy and free functions different, but even the API
of the constructor function is different. Cross-platform code can't
construct a FontSpec at all. This makes it hard to write a
cross-platform test program that works with them.
So, as a nasty bodge, I'll allow test programs to #define
SUPERSEDE_FONTSPEC_FOR_TESTING before including putty.h. Then they can
provide their own definition of FontSpec, and they also take
responsibility for superseding all the other functions that work with
one.
Normally you don't ever want to have a Conf structure that doesn't
have an entry for every primary key, because the code that uses Conf
to get real work done will fail assertions if lookups fail. But test
programs manipulating Conf in unusual ways are a special case.
(In particular, one thing you _can_ legally do with an empty Conf is
to call load_open_settings() to populate it. That has to be legal,
because it's how a Conf gets populated in the first place, after it's
initially created empty.)
Recently I encountered a CLI tool that took tens of seconds to run,
and produced no _visible_ output, but wrote ESC[0m to the terminal a
few times during its operation. (Probably by mistake. In other modes
it does print colourful messages, so I expect a 'reset colour' call
was accidentally outside the 'if' statement containing the rest of the
diagnostic it followed. Or something along those lines.)
I noticed this because every ESC[0m reset my pterm scrollback to the
bottom, which wasn't very helpful, and was unintentional on pterm's
part (as _well_ as on the part of the tool). But I can fix pterm!
At first glance the code _looked_ sensible: terminal.c contains calls
to seen_disp_event(term) whenever terminal output does something that
requires a redraw of the terminal window. Those are also the updates
that should count as 'reset scrollback on display activity'. And
ESC[0m, along with the rest of the SGR handler, correctly contained no
such call. So how did a display update happen at all?
The code was confusingly tangled up with the code that responds to
terminal activity by resetting the phase of the blinking cursor (if
any). term_reset_cblink() was calling seen_disp_event() (when surely
it should be the other way round!), and also, term_reset_cblink() was
called whenever _any_ terminal output data arrived. That combination
meant that any byte output to the terminal at all turned out to count
as display activity, whether or not it changed the screen contents.
Additionally, the other scrollback-reset flag, 'reset scrollback on
keypress', was handled by calling seen_disp_event() from the keyboard
handler. But display events and keyboard events are supposed to be
_independent_ potential causes of scrollback resets - it doesn't make
any sense to handle one by treating it as the other!
So I've reorganised the code completely:
- the seen_disp_event *flag* is now gone. Instead, the
seen_disp_event function tests the scroll_on_disp flag, and if set,
resets the scroll position immediately and sets the general
'scrollbar needs updating' flag.
- keyboard input is handled by doing exactly the same thing except
testing the scroll_on_key flag, so the two systems are properly
independent. That code calls term_schedule_update so that the
terminal will be redrawn as a result of the scroll, but doesn't
also call seen_disp_event() for the rest of the full treatment.
- the term_update code that does the scrollbar update is much
simpler, since now it only needs to test that one flag.
- I also had to set that flag explicitly in scroll() so that the
scrollbar would still be updated as a result of the scrollback size
changing. I think that must have been happening entirely by
accident before.
- term_reset_cblink is subsumed into seen_disp_event, so that only
_substantive_ display updates cause the cursor blink phase to reset
to the start of the solid period.
Result: if programs output no-op sequences like ESC[0m, or if you
press keys that don't echo, then the cursor will carry on blinking
normally, and (if you don't also have scroll_on_key set) the
scrollback won't be reset. And the code is slightly shorter than it
was before, and hopefully more sensible too.
(However, other classes of no-op activity _will_ still cause a cursor
blink phase change and a scrollback reset, such as sending a
cursor-positioning sequence that puts the cursor in the same place it
was already - even something as simple as ^M when already at the start
of the line. It might be nice to fix that, but it's much more
difficult: you'd have to either put a complicated and error-prone test
at every seen_disp_event call site, or else expensively diff the
entire visible terminal state against how it was before. And to avoid
a nondeterministic dependency on the terminal update cooldown, that
diff would have to be done at the granularity of individual control
sequences rather than a bounded number of times a second. I'd rather
not!)
A user just reported that 0.79 doesn't build out of the box on Ubuntu
14.04 (trusty), because although its gcc (4.8.4) does _support_ C99,
it doesn't enable it without a non-default -std option. The user was
able to work around the problem by defining CMAKE_C_FLAGS=-std=gnu99,
but it would have been nicer if we'd done that automatically. Setting
CMAKE_C_STANDARD causes cmake to do so.
(This isn't a regression of 0.79 over 0.78 as far as I know; the user
in question said they had last built 0.76.)
I was surprised to find Ubuntu 14.04 still in use at all, but a quick
web search revealed that its support has been extended until next
year, so fair enough, I suppose. It's also running a cmake way older
than we support, but apparently that can be worked around via
Kitware's binary tarball downloads (which do still run on 14.04).
This is a bit unsatisfactory: I'd prefer to ask for C standards
support of _at least_ C99 level, and C11 if possible. Then I could
test for the presence of C11 features via check_c_source_compiles, and
use them opportunistically (e.g. in macro definitions). But as far as
I can see, cmake has no built-in support for asking for a standards
level of 'as new as you can get, but no older than 99'. Oh well.
(In any case, the thing I'd find most useful from C11 is _Generic, and
since that's in implementation namespace, compilers can - and do -
support it in C99 mode anyway. So it's probably fine, at least for now.)
Experimenting with different compile flags pointed out two instances
of typedefing the same name twice (though benignly, with the same
definition as well). PsocksDataSink was typedefed a couple of lines
above its struct definition and then again _with_ its struct
definition; cliloop_continue_t was typedefed in unix/platform.h and
didn't need defining again in unix/psocks.c.
That's two releases running I've got most of the way through the
mechanical upload processes and suddenly realised I still have a piece
of creative writing to do. A small one, but even so, there's no reason
it couldn't have been prepared a week in advance like the rest of the
announcements and changelogs. The only reason I didn't is that the
checklist didn't remind me to. Now it does.
A user reports, _just_ in time to make the 0.79 release, that changes
in the Windows port of OpenSSH from 8.9.x have made it unhappy with
the use of \ as a path separator in the 'IdentityAgent' config
directive. Switch to /, which is also accepted by earlier versions, so
it should work everywhere.
This can now happen if, for instance, the CLMUL implementation of
aesgcm is compiled in, but not available at runtime because we're on
an old Intel CPU.
In this situation, testcrypt would segfault when driven by
test/cryptsuite.py, and test/list-accel.py would erroneously claim the
CLMUL implementation was available when it wasn't.
Spotted by Coverity. If PuTTY is functioning as a sharing upstream,
and a new downstream mishandles the version string exchange in any way
that provokes an error message from share_receive() (such as failing
to start the greeting with the expected protocol-name string), we were
calling share_disconnect() and then going to crFinish. But
share_disconnect is capable of actually freeing the entire
ssh_sharing_connstate which contains the coroutine state - in which
case, crFinish's zeroing out of crLine is a use-after-free.
The usual pattern elsewhere in this code is to exit a coroutine with
an ordinary 'return' when you've destroyed its state structure. Switch
to doing that here.
Apparently when I started using _wfopen in commit 8bd75b85ed, the
winegcc build (which I mostly use for Coverity Scan) stopped working,
because _wfopen isn't included in any of the libraries I explicitly
had on my link line.
Rather than mess about with cmake, it's easier to just bodge it in the
winegcc wrapper script, since we had one of those already.
If we don't have GTK enabled in the build, then lots of important
stuff never gets added to the 'guiterminal' build-time object library,
without which these terminal-using programs can't link successfully,
even though they don't actually use GTK.
I could add yet more stub functions, but I don't think that's really
necessary - it doesn't seem like a serious inconvenience that you can
only test the terminal on a platform where you can also build real
applications that include it. So I've just moved those two executable
file definitions inside the Big If that conditionalises PuTTY and
pterm themselves.
An irate user complained today that they wished we'd documented
firewalls as a possible cause of WSAECONNREFUSED, because it took them
ages to think of checking that. Fair enough.
Someone just asked us a question which suggests they might have thought
they need to supply both files in the 'Public-key authentication' box in
the config dialog, to use public-key authentication at all. I can see
why someone might think that, anyway.
For serial connections, &H generally expanded to the empty string.
This seems more useful.
(It so happens that &H _could_ expand to the serial line if it came from
the command-line, but that's accidental.)
The pathname of Pageant's named pipe includes the name of the user
running it. And Windows usernames are allowed to have spaces in! So
the pipe pathname may also have a space, in which case Windows OpenSSH
will interpret the spacey pathname as an invalid first half followed
by a trailing garbage word.
A user reports that quoting the filename makes this work. Since double
quotes are an illegal Windows filename character, I think it should
therefore do no harm to quote it unconditionally, which is the easiest
fix.
Index the older format as 'PEM-style', since PEM is how it's referred to
in OpenSSH's own docs; and justify why you might want to use the newer
format.
Testing the script described in the previous commit message, Leak
Sanitiser pointed out that we didn't free the LogContext from the
first connection, and overwrote the pointer variable with the one from
the second.
A user points out that it always returned failure, even if it
succeeded. As a result, a 'psftp -b' script of the form
open this.host
do stuff
close
open that.host
do stuff
close
would terminate at the first 'close', believing it to have failed, and
PSFTP would exit with a failure status.
(Not only that, but there would be no error message indicating _why_
PSFTP had closed, because when a command returns failure it's expected
to have printed an error message already.)
These are all going to be used by a test program I have in the works,
which will need to link against a lot more of the code base than any
so far. So we need a pile of new stubs.
The trickiest of these was stubs/no-network.c, which had to
conditionally define a couple of extra network functions, because
there are Windows-specific plug_closing_system_error and
plug_closing_winsock_error functions.
CONF_bold_style is a pair of bit flags rather than an enum, so its
values aren't just BOLD_STYLE_FONT and BOLD_STYLE_COLOUR but also the
bitwise OR of them. (Hopefully not neither.)
The Windows version of the Filename structure now contains three
versions of the pathname, in UTF-16, UTF-8 and the system code page.
Callers can use whichever is most convenient.
All uses of filenames for actually opening files now use the UTF-16
version, which means they can tolerate 'exotic' filenames, by which I
mean those including Unicode characters outside the host system's
CP_ACP default code page.
Other uses of Filename structures inside the 'windows' subdirectory do
something appropriate, e.g. when printing a filename inside a message
box or a console message, we use the UTF-8 version of the filename
with the UTF-8 version of the appropriate API.
There are three remaining pieces to full Unicode filename support:
One is that the cross-platform code has many calls to
filename_to_str(), embodying the assumption that a file name can be
reliably converted into the unspecified current character set; those
will all need changing in some way.
Another is that write_setting_filename(), in windows/storage.c, still
saves filenames to the Registry as an ordinary REG_SZ in the system
code page. So even if an exotic filename were stored in a Conf, that
Conf couldn't round-trip via the Registry and back without corrupting
that filename by coercing it back to a string that fits in CP_ACP and
therefore doesn't represent the same file. This can't be fixed without
a compatibility break in the storage format, and I don't want to make
a minimal change in that area: if we're going to break compatibility,
then we should break it good and hard (the Nanny Ogg principle), and
devise a completely fresh storage representation that fixes as many
other legacy problems as possible at the same time. So that's my plan,
not yet started.
The final point, much more obviously, is that we're still short of
methods to _construct_ any Filename structures using a Unicode input
string! It should now work to enter one in the GUI configurer (either
by manual text input or via the file selector), but it won't
round-trip through a save and load (as discussed above), and there's
still no way to specify one on the command line (the groundwork is
laid by commit 10e1ac7752 but not yet linked up).
But this is a start.
I think the only reason it currently takes a plain string is because
its interesting caller (in unix/x11.c) has just constructed a string
out of an environment variable, and it seemed like the path of least
effort not to bother wrapping it into a proper Filename. But when
Filename on Windows becomes more interesting, we'll need it to take
the full version.
The values of that field in a Control structure are already
platform-dependent: you're only supposed to set them in cross-platform
code by using #defined names that each platform will define
differently.
Now I need the _type_ as well as the values to be opaque, because I'm
about to make a change on Windows that turns it into a wide character
string instead of a char string.
We already had encode_wide_string_as_utf8, which treats the wide
string as UTF-16 or UTF-32 as appropriate to the size of wchar_t. I'm
about to need the inverse function, and was surprised that it didn't
already exist (even though enough component parts did to make it easy).