The number of people has been steadily increasing who read our source
code with an editor that thinks tab stops are 4 spaces apart, as
opposed to the traditional tty-derived 8 that the PuTTY code expects.
So I've been wondering for ages about just fixing it, and switching to
a spaces-only policy throughout the code. And I recently found out
about 'git blame -w', which should make this change not too disruptive
for the purposes of source-control archaeology; so perhaps now is the
time.
While I'm at it, I've also taken the opportunity to remove all the
trailing spaces from source lines (on the basis that git dislikes
them, and is the only thing that seems to have a strong opinion one
way or the other).
Apologies to anyone downstream of this code who has complicated patch
sets to rebase past this change. I don't intend it to be needed again.
I've fixed a handful of these where I found them in passing, but when
I went systematically looking, there were a lot more that I hadn't
found!
A particular highlight of this collection is the code that formats
Windows clipboard data in RTF, which was absolutely crying out for
strbuf_catf, and now it's got it.
For a start, they now have different names on Windows and Unix,
reflecting their different roles: on Windows they apply escaping to
any string that's going to be used as a registry key (be it a session
name, or a host name for host key storage), whereas on Unix they're
for constructing saved-session file names in particular (and also
handle the special case of filling in "Default Settings" for NULL).
Also, they now produce output by writing to a strbuf, which simplifies
a lot of the call sites. In particular, the strbuf output idiom is
passed on to enum_settings_next, which is especially nice because its
only actual caller was doing an ad-hoc realloc loop that I can now get
rid of completely.
Thirdly, on Windows they're centralised into winmisc.c instead of
living in winstore.c, because that way Pageant can use the unescape
function too. (It was spotting the duplication there that made me
think of doing this in the first place, but once I'd started, I had to
keep unravelling the thread...)
My normal habit these days, in new code, is to treat int and bool as
_almost_ completely separate types. I'm still willing to use C's
implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine,
no need to spell it out as blob.len != 0), but generally, if a
variable is going to be conceptually a boolean, I like to declare it
bool and assign to it using 'true' or 'false' rather than 0 or 1.
PuTTY is an exception, because it predates the C99 bool, and I've
stuck to its existing coding style even when adding new code to it.
But it's been annoying me more and more, so now that I've decided C99
bool is an acceptable thing to require from our toolchain in the first
place, here's a quite thorough trawl through the source doing
'boolification'. Many variables and function parameters are now typed
as bool rather than int; many assignments of 0 or 1 to those variables
are now spelled 'true' or 'false'.
I managed this thorough conversion with the help of a custom clang
plugin that I wrote to trawl the AST and apply heuristics to point out
where things might want changing. So I've even managed to do a decent
job on parts of the code I haven't looked at in years!
To make the plugin's work easier, I pushed platform front ends
generally in the direction of using standard 'bool' in preference to
platform-specific boolean types like Windows BOOL or GTK's gboolean;
I've left the platform booleans in places they _have_ to be for the
platform APIs to work right, but variables only used by my own code
have been converted wherever I found them.
In a few places there are int values that look very like booleans in
_most_ of the places they're used, but have a rarely-used third value,
or a distinction between different nonzero values that most users
don't care about. In these cases, I've _removed_ uses of 'true' and
'false' for the return values, to emphasise that there's something
more subtle going on than a simple boolean answer:
- the 'multisel' field in dialog.h's list box structure, for which
the GTK front end in particular recognises a difference between 1
and 2 but nearly everything else treats as boolean
- the 'urgent' parameter to plug_receive, where 1 vs 2 tells you
something about the specific location of the urgent pointer, but
most clients only care about 0 vs 'something nonzero'
- the return value of wc_match, where -1 indicates a syntax error in
the wildcard.
- the return values from SSH-1 RSA-key loading functions, which use
-1 for 'wrong passphrase' and 0 for all other failures (so any
caller which already knows it's not loading an _encrypted private_
key can treat them as boolean)
- term->esc_query, and the 'query' parameter in toggle_mode in
terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h,
but can also hold -1 for some other intervening character that we
don't support.
In a few places there's an integer that I haven't turned into a bool
even though it really _can_ only take values 0 or 1 (and, as above,
tried to make the call sites consistent in not calling those values
true and false), on the grounds that I thought it would make it more
confusing to imply that the 0 value was in some sense 'negative' or
bad and the 1 positive or good:
- the return value of plug_accepting uses the POSIXish convention of
0=success and nonzero=error; I think if I made it bool then I'd
also want to reverse its sense, and that's a job for a separate
piece of work.
- the 'screen' parameter to lineptr() in terminal.c, where 0 and 1
represent the default and alternate screens. There's no obvious
reason why one of those should be considered 'true' or 'positive'
or 'success' - they're just indices - so I've left it as int.
ssh_scp_recv had particularly confusing semantics for its previous int
return value: its call sites used '<= 0' to check for error, but it
never actually returned a negative number, just 0 or 1. Now the
function and its call sites agree that it's a bool.
In a couple of places I've renamed variables called 'ret', because I
don't like that name any more - it's unclear whether it means the
return value (in preparation) for the _containing_ function or the
return value received from a subroutine call, and occasionally I've
accidentally used the same variable for both and introduced a bug. So
where one of those got in my way, I've renamed it to 'toret' or 'retd'
(the latter short for 'returned') in line with my usual modern
practice, but I haven't done a thorough job of finding all of them.
Finally, one amusing side effect of doing this is that I've had to
separate quite a few chained assignments. It used to be perfectly fine
to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a
the 'true' defined by stdbool.h, that idiom provokes a warning from
gcc: 'suggest parentheses around assignment used as truth value'!
Looks as if I introduced this in commit 733fcca2c, where the pointer
returned from enum_settings_start() stopped being the same thing as
the underlying 'DIR *' - I needed to retain a check for the outer
containing structure not being NULL but the DIR * being NULL inside
it.
These are things where no fix was actually necessary in the code, but
the FIXME indicated that the comment itself was either in need of a
rewrite or removal.
Most of these were 'void *' because they weren't even reliably a
structure type underneath - the per-OS storage systems would directly
cast read/write/enum settings handles to and from random things like
FILE *, Unix DIR *, or Windows HKEY. So I've wrapped them in tiny
structs for the sake of having a sensible structure tag visible
elsewhere in the code.
I think these were not strictly necessary, since passing a null
pointer to access(2) would have resulted in EINVAL rather than a
segfault. But it's clearer to put them in (and keeps static checkers a
bit happier).
The XDG configuration location ($XDG_CONFIG_HOME/putty, or
~/.config/putty) is now prefered over the old ~/.putty location, if the
XDG location already exists. If it doesn't exist, we try to use one of
the old locations ($HOME/.putty, [/etc/passwd home]/.putty, /.putty). If
none of the directories exist, we fall back to ~/.config/putty or
~/.putty, if the XDG_DEFAULT macro is defined or not, respectively. The
PUTTYDIR environment variable remains a definitive override of the
configuration location. This all ensures that the old location is still
used, unless the user explicitly requests otherwise.
The configuration directories are created using the make_dir_path()
function, to ensure that saving the configuration doesn't fail e.g.
because of a non-existent ~/.config directory.
The general plan is that if PuTTY knows a host key for a server, it
should preferentially ask for the same type of key so that there's some
chance of actually getting the same key again. This should mean that
when a server (or PuTTY) adds a new host key type, PuTTY doesn't
gratuitously switch to that key type and then warn the user about an
unrecognised key.
allocated type.
The main reason for this is to stop it from taking up a fixed large
amount of space in every 'struct value' subunion in conf.c, although
that makes little difference so far because Filename is still doing
the same thing (and is therefore next on my list). However, the
removal of its arbitrary length limit is not to be sneezed at.
[originally from svn r9314]
'Config' in putty.h, which stores all PuTTY's settings and includes an
arbitrary length limit on every single one of those settings which is
stored in string form. In place of it is 'Conf', an opaque data type
everywhere outside the new file conf.c, which stores a list of (key,
value) pairs in which every key contains an integer identifying a
configuration setting, and for some of those integers the key also
contains extra parts (so that, for instance, CONF_environmt is a
string-to-string mapping). Everywhere that a Config was previously
used, a Conf is now; everywhere there was a Config structure copy,
conf_copy() is called; every lookup, adjustment, load and save
operation on a Config has been rewritten; and there's a mechanism for
serialising a Conf into a binary blob and back for use with Duplicate
Session.
User-visible effects of this change _should_ be minimal, though I
don't doubt I've introduced one or two bugs here and there which will
eventually be found. The _intended_ visible effects of this change are
that all arbitrary limits on configuration strings and lists (e.g.
limit on number of port forwardings) should now disappear; that list
boxes in the configuration will now be displayed in a sorted order
rather than the arbitrary order in which they were added to the list
(since the underlying data structure is now a sorted tree234 rather
than an ad-hoc comma-separated string); and one more specific change,
which is that local and dynamic port forwardings on the same port
number are now mutually exclusive in the configuration (putting 'D' in
the key rather than the value was a mistake in the first place).
One other reorganisation as a result of this is that I've moved all
the dialog.c standard handlers (dlg_stdeditbox_handler and friends)
out into config.c, because I can't really justify calling them generic
any more. When they took a pointer to an arbitrary structure type and
the offset of a field within that structure, they were independent of
whether that structure was a Config or something completely different,
but now they really do expect to talk to a Conf, which can _only_ be
used for PuTTY configuration, so I've renamed them all things like
conf_editbox_handler and moved them out of the nominally independent
dialog-box management module into the PuTTY-specific config.c.
[originally from svn r9214]
reorganises the GSSAPI support so that it handles alternative
implementations of the GSS-API. In particular, this means PuTTY can
now talk to MIT Kerberos for Windows instead of being limited to
SSPI. I don't know for sure whether further tweaking will be needed
(to the UI, most likely, or to automatic selection of credentials),
but testing reports suggest it's now at least worth committing to
trunk to get it more widely tested.
[originally from svn r8952]
client- and server-side fonts into a single namespace was mainly to
hope there would naturally be no collisions, and to provide
disambiguating "client:" and "server:" prefixes for manual use in
emergencies.
Jacob points out, however, that his system not only has a namespace
clash but worse still the clash is at the name "fixed", which is our
default font! So, modify my namespace policy to use the
disambiguating prefixes everywhere by default, and use _unprefixed_
names only if the user types one in by hand.
In particular, I've changed the keys used to store font names in
Unix saved session files. Font names read from the new keys will be
passed straight to the new unifont framework; font names read from
the old keys will have "server:" prepended. So any existing
configuration file for GTK1 PuTTY should now work reliably in GTK2
PuTTY and select the same font, even if that font is one on which
your system (rather, your client+server combination) has a font
namespace clash.
[originally from svn r7973]
some point too: introduce a bunch of environment variables which can
override Unix PuTTY's usual idea of where to find its dotfiles.
Setting PUTTYDIR moves the entire ~/.putty directory; setting
PUTTYSESSIONS, PUTTYSSHHOSTKEYS or PUTTYRANDOMSEED move specific
things within that directory.
While I'm here, also be prepared to fall back to password file
lookups if $HOME is undefined (though we still use $HOME in
preference when it is defined, because that's polite and useful).
Also, on general principles, tweak the make_filename() function
prototype so it doesn't rely on fixed-size buffers.
[originally from svn r7934]
Use the POSIX PATH_MAX if it exists, and fall back to 1024 otherwise.
We should really allocate filenames dynamically if PATH_MAX isn't defined.
[originally from svn r6307]
which pretty much any module can call to request a call-back in the
future. So terminal.c can do its own handling of blinking, visual
bells and deferred screen updates, without having to rely on
term_update() being called 50 times a second (fixes: pterm-timer);
and ssh.c and telnet.c both invoke a new module pinger.c which takes
care of sending keepalives, so they get sent uniformly in all front
ends (fixes: plink-keepalives, unix-keepalives).
[originally from svn r4906]
[this svn revision also touched putty-wishlist]
the end of the host key file. This is perfectly all right if a host
key never changes, but it's completely useless if you need to
replace an existing entry. This version should do better.
[originally from svn r3719]
malloc functions, which automatically cast to the same type they're
allocating the size of. Should prevent any future errors involving
mallocing the size of the wrong structure type, and will also make
life easier if we ever need to turn the PuTTY core code from real C
into C++-friendly C. I haven't touched the Mac frontend in this
checkin because I couldn't compile or test it.
[originally from svn r3014]
letting me know about instances of this, but it turns out that my
ctype.h explicitly casts input values to `int' to evade the
`subscript has type char' warning, so it had been carefully not
letting me know! Found them all by compiling with a doctored
ctype.h, and hopefully fixed them all too.
[originally from svn r2927]
opaque to all platform-independent modules and only handled within
per-platform code. `Filename' is there because the Mac has a magic
way to store filenames (though currently this checkin doesn't
support it!); `FontSpec' is there so that all the auxiliary stuff
such as font height and charset and so on which is needed under
Windows but not Unix can be kept where it belongs, and so that I can
have a hope in hell of dealing with a font chooser in the forthcoming
cross-platform config box code, and best of all it gets the horrid
font height wart out of settings.c and into the Windows code where
it should be.
The Mac part of this checkin is a bunch of random guesses which will
probably not quite compile, but which look roughly right to me.
Sorry if I screwed it up, Ben :-)
[originally from svn r2765]
holdout static I hadn't noticed; unicode.c had one too; and a large
number of statics that were perfectly OK due to being constants have
been made `const', with assorted `const' repercussions all over the
place. I now declare `remove-statics' to be fixed.
[originally from svn r2594]
doesn't yet use the SSH agent, no way to specify arbitrary config
options, no manpage yet, couple of other fiddly things need doing,
but it makes SSH connections and doesn't fall over horribly so I say
it's a good start. Now to run it under valgrind...
[originally from svn r2165]
The current pty.c backend is temporarily a loopback device for
terminal emulator testing, the display handling is only just enough
to show that terminal.c is functioning, the keyboard handling is
laughable, and most features are absent. Next step: bring output and
input up to a plausibly working state, and put a real pty on the
back to create a vaguely usable prototype. Oh, and a scrollbar would
be nice too.
In _theory_ the Windows builds should still work fine after this...
[originally from svn r2010]