Suggested by Jacob: if this dialog box is going to pop up
_unexpectedly_ - perhaps when people have momentarily forgotten
they're even running Pageant, or at least forgotten they added a key
encrypted,, or maybe haven't found out yet that their IT installed it
- then it could usefully come with a help button that pops up further
explanation of what the dialog box means, and from which you can find
your way to the rest of the help.
It's no longer a hard requirement, because now we're on cmake rather
than mkfiles.pl, we _can_ compile the same source file multiple times
with different ifdefs.
I still think it's a better idea not to: I'd prefer that most of this
code base remained in the form of libraries reused between
applications, with parametrisation done by choice of what other
objects to link them to rather than by recompiling the library modules
themselves with different settings. But the latter is now a
possibility at need.
This brings various concrete advantages over the previous system:
- consistent support for out-of-tree builds on all platforms
- more thorough support for Visual Studio IDE project files
- support for Ninja-based builds, which is particularly useful on
Windows where the alternative nmake has no parallel option
- a really simple set of build instructions that work the same way on
all the major platforms (look how much shorter README is!)
- better decoupling of the project configuration from the toolchain
configuration, so that my Windows cross-building doesn't need
(much) special treatment in CMakeLists.txt
- configure-time tests on Windows as well as Linux, so that a lot of
ad-hoc #ifdefs second-guessing a particular feature's presence from
the compiler version can now be replaced by tests of the feature
itself
Also some longer-term software-engineering advantages:
- other people have actually heard of CMake, so they'll be able to
produce patches to the new build setup more easily
- unlike the old mkfiles.pl, CMake is not my personal problem to
maintain
- most importantly, mkfiles.pl was just a horrible pile of
unmaintainable cruft, which even I found it painful to make changes
to or to use, and desperately needed throwing in the bin. I've
already thrown away all the variants of it I had in other projects
of mine, and was only delaying this one so we could make the 0.75
release branch first.
This change comes with a noticeable build-level restructuring. The
previous Recipe worked by compiling every object file exactly once,
and then making each executable by linking a precisely specified
subset of the same object files. But in CMake, that's not the natural
way to work - if you write the obvious command that puts the same
source file into two executable targets, CMake generates a makefile
that compiles it once per target. That can be an advantage, because it
gives you the freedom to compile it differently in each case (e.g.
with a #define telling it which program it's part of). But in a
project that has many executable targets and had carefully contrived
to _never_ need to build any module more than once, all it does is
bloat the build time pointlessly!
To avoid slowing down the build by a large factor, I've put most of
the modules of the code base into a collection of static libraries
organised vaguely thematically (SSH, other backends, crypto, network,
...). That means all those modules can still be compiled just once
each, because once each library is built it's reused unchanged for all
the executable targets.
One upside of this library-based structure is that now I don't have to
manually specify exactly which objects go into which programs any more
- it's enough to specify which libraries are needed, and the linker
will figure out the fine detail automatically. So there's less
maintenance to do in CMakeLists.txt when the source code changes.
But that reorganisation also adds fragility, because of the trad Unix
linker semantics of walking along the library list once each, so that
cyclic references between your libraries will provoke link errors. The
current setup builds successfully, but I suspect it only just manages
it.
(In particular, I've found that MinGW is the most finicky on this
score of the Windows compilers I've tried building with. So I've
included a MinGW test build in the new-look Buildscr, because
otherwise I think there'd be a significant risk of introducing
MinGW-only build failures due to library search order, which wasn't a
risk in the previous library-free build organisation.)
In the longer term I hope to be able to reduce the risk of that, via
gradual reorganisation (in particular, breaking up too-monolithic
modules, to reduce the risk of knock-on references when you included a
module for function A and it also contains function B with an
unsatisfied dependency you didn't really need). Ideally I want to
reach a state in which the libraries all have sensibly described
purposes, a clearly documented (partial) order in which they're
permitted to depend on each other, and a specification of what stubs
you have to put where if you're leaving one of them out (e.g.
nocrypto) and what callbacks you have to define in your non-library
objects to satisfy dependencies from things low in the stack (e.g.
out_of_memory()).
One thing that's gone completely missing in this migration,
unfortunately, is the unfinished MacOS port linked against Quartz GTK.
That's because it turned out that I can't currently build it myself,
on my own Mac: my previous installation of GTK had bit-rotted as a
side effect of an Xcode upgrade, and I haven't yet been able to
persuade jhbuild to make me a new one. So I can't even build the MacOS
port with the _old_ makefiles, and hence, I have no way of checking
that the new ones also work. I hope to bring that port back to life at
some point, but I don't want it to block the rest of this change.
Now you can run it with --header, --copyrightdoc or --licencedoc
depending on which file you want it to generate. mkfiles.pl only runs
the header mode; the other two modes have become rules in
Makefile.doc.
If we're publishing the server, then we should say something about the
fact that this option exists to talk to it. Also, if the option exists
on the front page at all in a released version of PuTTY, it behooves
us to document it slightly more usefully than just a handwave at 'this
is specialist and experimental'.
SUPDUP came, at my insistence, with a history section in the docs
for people who hadn't heard of it. It seems only fair that the
other obsolete network protocols (or, at least, the ones we *wish*
were obsolete :-) should have the same kind of treatment.
Moved the Raw protocol to below Serial, so that the first two
sections are SSH and Serial, matching the (now very emphatic)
priority order in the config UI.
Similarly, reordered the bullet points in \k{config-hostname}.
I've filled in some text about prime generation methods and Ed448,
which were all the things marked as 'review before release'.
While I'm at it, also filled in a reasonable enough DSA key length
recommendation, because the FIXME comment in that section was within
sight of one of the places I was editing. FIPS 186-4 seemed to think
that RSA and DSA had comparable relationships between the key length
and practical security level, so I see no reason not to use the same
recommendation for both key types.
This seems more useful than the previous behaviour of not prompting for
a passphrase and only emitting the public part; if we want that back
I suppose we could invent a "-O text-public".
Also, document the text dump format a bit in the man page.
This removes both uses of SHA-1 in the file format: it was used as the
MAC protecting the key file against tamperproofing, and also used in
the key derivation step that converted the user's passphrase to cipher
and MAC keys.
The MAC is simply upgraded from HMAC-SHA-1 to HMAC-SHA-256; it is
otherwise unchanged in how it's applied (in particular, to what data).
The key derivation is totally reworked, to be based on Argon2, which
I've just added to the code base. This should make stolen encrypted
key files more resistant to brute-force attack.
Argon2 has assorted configurable parameters for memory and CPU usage;
the new key format includes all those parameters. So there's no reason
we can't have them under user control, if a user wants to be
particularly vigorous or particularly lightweight with their own key
files. They could even switch to one of the other flavours of Argon2,
if they thought side channels were an especially large or small risk
in their particular environment. In this commit I haven't added any UI
for controlling that kind of thing, but the PPK loading function is
all set up to cope, so that can all be added in a future commit
without having to change the file format.
While I'm at it, I've also switched the CBC encryption to using a
random IV (or rather, one derived from the passphrase along with the
cipher and MAC keys). That's more like normal SSH-2 practice.
When I transcribed the code into this document, I misread 'put_data'
as 'put_string' in several places, and documented SSH-style string
length headers that do not actually exist in the format.
Somebody on comp.security.ssh asked about it recently, and I decided
that storing it in a comment in the key file was not really good
enough. Also, that comment was incomplete (it listed the private key
formats for RSA and DSA but not any of the newer ECC key types, simple
as their private-key formats may be).
A user wrote in to point out the one in winhandl.c, and out of sheer
curiosity, I grepped the whole source base for '([a-zA-Z])\1\1' to see
if there were any others. Of course there are a lot of perfectly
sensible ones, like 'www' or 'Grrr', not to mention any amount of
0xFFFF and the iiii/bbbb emphasis system in Halibut code paragraphs,
but I did spot one more in the recently added udp.but section on
traits, and another in a variable name in uxagentsock.c.