Historically, because of the way Windows Pageant's IPC works, PuTTY's
agent forwarding has always been message-oriented. The channel
implementation in agentf.c deals with receiving a data stream from the
remote agent client and breaking it up into messages, and then it
passes each message individually to agent_query().
On Unix, this is more work than is really needed, and I've always
meant to get round to doing the more obvious thing: making an agent
forwarding channel into simply a stream-oriented proxy, passing raw
data back and forth between the SSH channel and the local AF_UNIX
socket without having to know or care about the message boundaries in
the stream.
The portfwdmgr_connect_socket() facility introduced by the previous
commit is the missing piece of infrastructure to make that possible.
Now, the agent client module provides an API that includes a callback
you can pass to portfwdmgr_connect_socket() to open a streamed agent
connection, and the agent forwarding setup function tries to use that
where possible, only falling back to the message-based agentf.c system
if it can't be done. On Windows, the new piece of agent-client API
returns failure, so we still fall back to agentf.c there.
There are two benefits to doing it this way. One is that it's just
simpler and more robust: if PuTTY isn't trying to parse the agent
connection, then it has less work to do and fewer places to introduce
bugs. The other is that it's futureproof against changes in the agent
protocol: if any kind of extension is ever introduced that requires
keeping state within a single agent connection, or that changes the
protocol itself so that agentf's message-boundary detection stops
working, then this forwarding system will still work.
When I'm declaring a local instance of some context structure type to
pass to a function which will pass it in turn to a callback, I've
tended to use a declaration of the form
struct context actx, *ctx = &actx;
so that the outermost caller can initialise the context, and/or read
out fields of it afterwards, by the same syntax 'ctx->foo' that the
callback function will be using. So you get visual consistency between
the two functions that share this context.
It only just occurred to me that there's a much neater way to declare
a context struct of this kind, which still makes 'ctx' behave like a
pointer in the owning function, and doesn't need all that weird
verbiage or a spare variable name:
struct context ctx[1];
That's much nicer! I've switched to doing that in all existing cases I
could find, and also in a couple of cases where I hadn't previously
bothered to do the previous more cumbersome idiom.
The do_select function is called with a boolean parameter indicating
whether we're supposed to start or stop paying attention to network
activity on a given socket. So if we freeze and unfreeze the socket in
mid-session because of backlog, we'll call do_select(s, false) to
freeze it, and do_select(s, true) to unfreeze it.
But the implementation of do_select in the Windows SFTP code predated
the rigorous handling of socket backlogs, so it assumed that
do_select(s, true) would only be called at initialisation time, i.e.
only once, and therefore that it was safe to use that flag as a cue to
set up the Windows event object to associate with socket activity.
Hence, every time the socket was frozen and unfrozen, we would create
a new netevent at unfreeze time, leaking the old one.
I think perhaps part of the reason why that was hard to figure out was
that the boolean parameter was called 'startup' rather than 'enable'.
To make it less confusing the next time I read this code, I've also
renamed it, and while I was at it, adjusted another related comment.
This commit switches as many ssh_hash_free / ssh_hash_new pairs as
possible to reuse the previous hash object via ssh_hash_reset. Also a
few other cleanups: use the wrapper function hash_simple() where
possible, and I've also introduced ssh_hash_digest_nondestructive()
and switched to that where possible as well.
Up until now, it's been a variadic _function_, whose argument list
consists of 'const char *' ASCIZ strings to concatenate, terminated by
one containing a null pointer. Now, that function is dupcat_fn(), and
it's wrapped by a C99 variadic _macro_ called dupcat(), which
automatically suffixes the null-pointer terminating argument.
This has three benefits. Firstly, it's just less effort at every call
site. Secondly, it protects against the risk of accidentally leaving
off the NULL, causing arbitrary words of stack memory to be
dereferenced as char pointers. And thirdly, it protects against the
more subtle risk of writing a bare 'NULL' as the terminating argument,
instead of casting it explicitly to a pointer. That last one is
necessary because C permits the macro NULL to expand to an integer
constant such as 0, so NULL by itself may not have pointer type, and
worse, it may not be marshalled in a variadic argument list in the
same way as a pointer. (For example, on a 64-bit machine it might only
occupy 32 bits. And yet, on another 64-bit platform, it might work
just fine, so that you don't notice the mistake!)
I was inspired to do this by happening to notice one of those bare
NULL terminators, and thinking I'd better check if there were any
more. Turned out there were quite a few. Now there are none.
Thanks to Patrick Stekovic for pointing out that, unlike sensible IP
stacks, Windows requires a non-default socket option to prevent a
second application from binding to a port you were already listening
on, causing some of your incoming connections to be diverted.
This replaces the previous setsockopt that enabled SO_REUSEADDR, which
I put there a long time ago in order to fix an annoying behaviour if
you used the same listening socket twice in rapid succession (e.g. for
successive PuTTYs forwarding the same port) and the second one failed
to bind the listening port because a left-over connection from the
first one was still in TIME_WAIT and causing the port number to be
marked as used.
As far as I can see, SO_EXCLUSIVEADDRUSE and SO_REUSEADDR are mutually
exclusive - if I try to set both, either way round, then setsockopt
returns failure on the second one - so if I have to set the former
then I _can't_ set the latter. And fortunately, re-testing on Windows
10, the TIME_WAIT problem that SO_REUSEADDR was supposed to solve
doesn't seem to exist any more: I deliberately tried listening on a
port that had a TIME_WAIT connection sitting on it, and it worked for
me even without SO_REUSEADDR.
(I can't remember now whether I definitely confirmed the TIME_WAIT
problem on a previous version of Windows, or whether I just assumed it
would happen on Windows in the same way as Linux, where I definitely
do remember observing it.)
While I'm changing that setsockopt call, I've also fixed its 'on'
parameter so that it's a BOOL rather than an int, in accordance with
the docs for WinSock setsockopt.
The message "Reusing a shared connection to this server" is sent to
the seat's output method during the call to ssh_init. In Windows
Plink, that output method wants to talk to the BinarySink stderr_bs
(or stdout_bs, but for this particular message, stderr). So we have to
have already set up stderr_bs by the time the backend init function is
called.
When I introduced the unreachable() macro in commit 0112936ef, I
searched the source code for assert(0) and assert(false), together
with their variant form assert(0 && "explanatory text"). But I didn't
search for assert(!"explanatory text"), which is the form I used to
use before finding that assert(0 && "text") seemed to be preferred in
other code bases.
So, here's a belated replacement of all the assert(!"stuff") macros
with further instances of unreachable().
The number of people has been steadily increasing who read our source
code with an editor that thinks tab stops are 4 spaces apart, as
opposed to the traditional tty-derived 8 that the PuTTY code expects.
So I've been wondering for ages about just fixing it, and switching to
a spaces-only policy throughout the code. And I recently found out
about 'git blame -w', which should make this change not too disruptive
for the purposes of source-control archaeology; so perhaps now is the
time.
While I'm at it, I've also taken the opportunity to remove all the
trailing spaces from source lines (on the basis that git dislikes
them, and is the only thing that seems to have a strong opinion one
way or the other).
Apologies to anyone downstream of this code who has complicated patch
sets to rebase past this change. I don't intend it to be needed again.
The RESIZE_EITHER resizing mode responds to a window resize by
changing the logical terminal size if the window is shown normally, or
by changing the font size to keep the terminal size the same if the
resize is a transition between normal and maximised state.
But a user pointed out that it's also possible for a window to receive
a WM_SIZE message while _remaining_ in maximised state, and that
PuTTY's resize logic didn't allow for that possibility. It occurs when
there's a change in the amount of available screen space for the
window to be maximised _in_: e.g. when the video resolution is
reconfigured, or when you reconnect to a Remote Desktop session using
a client window of a different size, or even when you toggle the
'Automatically hide the taskbar' option in the Windows taskbar settings.
In that situation, the right thing seems to be for PuTTY to continue
to go with the policy of changing the font size rather than the
logical terminal size. In other words, we prefer to change the font
size when the resize is _from_ maximised state, _to_ maximised state,
_or both_.
That's easily implemented by removing the check of the 'was_zoomed'
flag, in the case where we've received a WM_SIZE message with the
state SIZE_MAXIMIZED: once we know the transition is _to_ maximised
state, it doesn't matter whether or not it was also _from_ it. (But we
still set the was_zoomed flag to the most recent maximised status, so
that we can recognise transitions _out_ of maximised mode.)
Commit f2e61275f converted the integer casts in cmpforsearch to
uintptr_t from unsigned long. But it left the companion function
cmpfortree alone, presumably on the grounds that the compiler didn't
report a warning for that one.
But those two functions (cmpfortree and cmpforsearch) are used with
the same tree234, so they're supposed to implement the same sorting
criterion. And the thing they're actually comparing, namely the
Windows API typedef SOCKET, is a pointer-sized integer. So there was a
latent bug here in which cmpforsearch was comparing all 64 bits of the
pointer, while cmpfortree was only comparing the low-order 32.
Set the initial buffer size to MAX_PATH + 1 (261). Increment e->i before
the function returns instead of incrementing it in the call to
RegEnumKey.
The initial buffer size was too small to fit a subkey with a 256
characters long name plus '\0', the first call to RegEnumKey would fail
with ERROR_MORE_DATA, sgrowarray would grow the buffer, and RegEnumKey
would be called again.
However, because e->i was incremented in the first RegEnumKey call, the
second call would get the next subkey and the subkey with the long name
would be skipped.
Saving a session with a 256 characters long name would trigger this
problem. The session would be saved in the registry, but Putty would not
be able to display it in the saved sessions list.
Pageant didn't have this problem since it uses a different function to get
the saved sessions and the size of the buffer used is MAX_PATH + 1. Pageant
and Putty would display slightly different lists of saved sessions.
I've only just noticed that it doesn't do anything at all!
Almost every implementation of the Socket vtable provides a flush()
method which does nothing, optionally with a comment explaining why
it's OK to do nothing. The sole exception is the wrapper Proxy_Socket,
which implements the method during its setup phase by setting a
pending_flush flag, so that when its sub-socket is later created, it
can call sk_flush on that. But since the sub-socket's sk_flush will do
nothing, even that is completely pointless!
Source control history says that sk_flush was introduced by Dave
Hinton in 2001 (commit 7b0e08270), who was going to use it for some
purpose involving the SSL Telnet support he was working on at the
time. That SSL support was never finished, and its vestigial
declarations in network.h were removed in 2015 (commit 42334b65b). So
sk_flush is just another vestige of that abandoned work, which I
should have removed in the latter commit but overlooked.
If the agent sent a response whose length field describes an interval
of memory larger than the file-mapping object the message is supposed
to be stored in, we shouldn't return that message to the client as if
nothing is wrong. Treat that the same as a failure to receive any
response at all.
Looking over this function today, I spotted several questionable uses
of strcat to concatenate "\PUTTY.RND" to the end of a pathname,
without having checked whether the pathname had filled up the static
fixed-size buffer already.
I don't think this is exploitable (because you'd have to be in control
of the local account already to control any of the data sources used
to fill those buffers). But it's horrible anyway, of course. Now all
of those are replaced with sensible dupcats.
(This patch re-indents a lot of the function, to give variables
tighter scopes. So the diff is best viewed with whitespace ignored.)
This assertion was supposed to be checking for the buffer overrun
fixed by the previous commit, but because it checks the buffer index
just _after_ writing into the buffer, it would have permitted a
one-byte overrun before failing the assertion.
If you select an entry in the saved sessions list box, but without
double-clicking to actually load it, and then you hit OK, the config-
box code will automatically load it. That just saves one click in a
common situation.
But in order to load that session, the config-box system first has to
ask the list-box control _which_ session is selected. On Windows, this
causes an assertion failure if the user has switched away from the
Session panel to some other panel of the config box, because when the
list box isn't on screen, its Windows control object is actually
destroyed.
I think a sensible answer is that we shouldn't be doing that implicit
load behaviour in any case if the list box isn't _visible_: silently
loading and launching a session someone selected a lot of UI actions
ago wasn't really the point. So now I make that behaviour only happen
when the list box (i.e. the Session panel) _is_ visible. That should
prevent the assertion failure on Windows, but the UI effect is cross-
platform, applying even on GTK where the control objects for invisible
panels persist and so the assertion failure didn't happen. I think
it's a reasonable UI change to make globally.
In order to implement it, I've had to invent a new query function so
that config.c can tell whether a given control is visible. In order to
do that on GTK, I had to give each control a pointer to the 'selparam'
structure describing its config-box pane, so that query function could
check it against the current one - and in order to do _that_, I had to
first arrange that those 'selparam' structures have stable addresses
from the moment they're first created, which meant adding a layer of
indirection so that the array of them in the top-level dlgparam
structure is now an array of _pointers_ rather than of actual structs.
(That way, realloc half way through config box creation can't
invalidate the important pointer values.)
Normally I never notice warnings in this build, because it runs inside
bob and dumps all the warnings in a part of the build log I never look
at. But I've had these fixes lying around for a while and should
commit them.
They're benign: all we need is an explicit declaration of strtoumax to
replace the one that stdlib.h doesn't provide, and a couple more of
those annoying NO_TYPECHECK modifiers on GET_WINDOWS_FUNCTION calls.
Having decided that the terminal's local echo setting shouldn't be
allowed to propagate through to termios, I think the local edit
setting shouldn't either. Also, no other terminal emulator I know
seems to implement this sequence, and if you enable it, things get
very confused in general. I think it's generally better off absent; if
somebody turns out to have been using it, then we'll at least be able
to find out what it's good for.
The functions that previously lived in it now live in terminal.c
itself; they've been renamed term_keyinput and term_keyinputw, and
their function is to add data to the terminal's user input buffer from
a char or wchar_t string respectively.
They sit more comfortably in terminal.c anyway, because their whole
point is to translate into the character encoding that the terminal is
currently configured to use. Also, making them part of the terminal
code means they can also take care of calling term_seen_key_event(),
which simplifies most of the call sites in the GTK and Windows front
ends.
Generation of text _inside_ terminal.c, from responses to query escape
sequences, is therefore not done by calling those external entry
points: we send those responses directly to the ldisc, so that they
don't count as keypresses for all the user-facing purposes like bell
overload handling and scrollback reset. To make _that_ convenient,
I've arranged that most of the code that previously lived in
lpage_send and luni_send is now in separate translation functions, so
those can still be called from situations where you're not going to do
the default thing with the translated data.
(However, pasted data _does_ still count as close enough to a keypress
to call term_seen_key_event - but it clears the 'interactive' flag
when the data is passed on to the line discipline, which tweaks a
minor detail of control-char handling in line ending mode but mostly
just means pastes aren't interrupted.)
It's identical in uxnoise and winnoise, being written entirely in
terms of existing cross-platform functions. Might as well centralise
it into sshrand.c.
Having explicitly _stated_ in commit 4dcc0fddf the principle that if
you ever queue a toplevel callback on a freeable object then you
should also call delete_callbacks_for_context on that object before
freeing it, I realised I'd never actually gone through and checked
methodically at every call site of queue_toplevel_callback. So I did,
and naturally, I found several missing ones.
The recent rewriting in both the GTK and Windows keyboard handlers
left the keypad 'Enter' key in a bad state, when no override is
enabled that causes it to generate an escape sequence.
On Windows, a series of fallbacks was causing it to generate \r
regardless of configuration, whereas in Telnet mode it should default
to generating the special Telnet new-line sequence, and in response to
ESC[20h (enabling term->cr_lf_return) it should generate \r\n.
On GTK, it wasn't generating anything _at all_, and also, I can't see
any evidence that the GTK keyboard handler had ever remembered to
implement the cr_lf_return mode.
Now Keypad Enter in non-escape-sequence mode should behave just like
Return, on both platforms.
TranslateKey() on Windows passed all numeric-keypad key events to this
function in terminal.c, and accepted whatever it gave back. That
included the handling for the trivial case of the numeric keypad, when
Num Lock is on and application keypad mode hasn't overridden it, so
that the keypad should be returning actual digits. In that case,
format_numeric_keypad_key() itself was returning the same ASCII
character I had passed in to it as a keypad identifier, and
TranslateKey was returning that in turn as the final translation.
Unfortunately, that means that with Num Lock on, the numeric keypad
translates into what _I_ used as the logical keypad codes inside the
source code, not what the local keyboard layout thinks are the right
codes. In particular, the key I identified as keypad '.' would render
as '.' even on a German keyboard where it ought to produce ','.
Fixed by removing the fallback case in format_numeric_keypad_key()
itself, so now it returns the empty string if it didn't produce an
escape sequence as its translation. Instead, the special case is in
window.c, which checks for a zero-length output string and handles it
by falling through to the keyboard-layout specific ToUnicode code
further down TranslateKey().
On the GTK side, no change is needed here: the GTK keyboard handler
does things in the opposite order, by trying the local input method
_first_ (unless it can see a reason up front to override it), and only
calling format_numeric_keypad_key() if that didn't provide a
translation. So the fallback ASCII translation in the latter was
already not used.
Re-consider the icon in light of the font size, so that we pick the icon
whose size mostly closely matches the terminal font, rather than always
scaling the default icon.
Remove the 'winhelp-topic' IDs from the Halibut source, and from the
code. Now we have one fewer name to think of every time we add a
setting.
I've left the HELPCTX system in place, with the vague notion that it
might be a useful layer of indirection for some future help system on a
platform like Mac OS X.
(I've left the putty.hlp target in doc/Makefile, if nothing else because
this is a convenient test case for Halibut's WinHelp support. But the
resulting help file will no longer support context help.)
GetDlgItemText_alloc is often used to get passwords from text fields,
so the memory should be freed and erased properly. Otherwise parts
of passwords might leak in memory.
Signed-off-by: Sven Strickroth <email@cs-ware.de>
In my eagerness to make sure we didn't _accidentally_ change the
seat's trust status back to trusted at any point, I forgot to do it on
purpose if a second SSH login phase is legitimately run in the same
terminal after the first session has ended.
Fill in all the function pointers for 3rd party Windows GSS DLLs, not
just some of them. These were missed out when GSS key exchange was added
in d515e4f1a3.
At the point when we change over the seat's trust status to untrusted
for the last time, to finish authentication, Plink will now present a
final interactive prompt saying 'Press Return to begin session'. This
is a hint that anything after that that resembles an auth prompt
should be treated with suspicion, because _PuTTY_ thinks it's finished
authenticating.
This is of course an annoying inconvenience for interactive users, so
I've tried to reduce its impact as much as I can. It doesn't happen in
GUI PuTTY at all (because the trust sigil system is used instead); it
doesn't happen if you use plink -batch (because then the user already
knows that they _never_ expect an interactive prompt); and it doesn't
happen if Plink's standard input is being redirected from anywhere
other than the terminal / console (because then it would be pointless
for the server to try to scam passphrases out of the user anyway,
since the user isn't in a position to enter one in response to a spoof
prompt). So it should only happen to people who are using Plink in a
terminal for interactive login purposes, and that's not _really_ what
I ever intended Plink to be used for (which is why it's never had any
out-of-band control UI like OpenSSH's ~ system).
If anyone _still_ doesn't like this new prompt, it can also be turned
off using the new -no-antispoof flag, if the user is willing to
knowingly assume the risk.
In terminal-based GUI applications, this is passed through to
term_set_trust_status, to toggle whether lines are prefixed with the
new trust sigil. In console applications, the function returns false,
indicating to the backend that it should employ some other technique
for spoofing protection.
This is not yet used by anything, but the idea is that it'll be a
graphic in the terminal window that can't be replicated by a server
sending escape sequences, and hence can be used as a reliable
indication that the text on a particular terminal line is generated by
PuTTY itself and not passed through from the server. This will make it
possible to detect a malicious server trying to mimic local prompts to
trick you out of information that shouldn't be sent over the wire
(such as private-key passphrases).
The trust sigil I've picked is a small copy of the PuTTY icon, which
is thematically nice (it can be read as if the PuTTY icon is the name
of the speaker in a dialogue) and also convenient because we had that
graphic available already on all platforms. (Though the contortions I
had to go through to make the GTK 1 code draw it were quite annoying.)
The trust sigil has the same dimensions as a CJK double-width
character, i.e. it's 2 character cells wide by 1 high.
Now, instead of each seat's prompt-handling function doing the
control-char sanitisation of prompt text, the SSH code does it. This
means we can do it differently depending on the prompt.
In particular, prompts _we_ generate (e.g. a genuine request for your
private key's passphrase) are not sanitised; but prompts coming from
the server (in keyboard-interactive mode, or its more restricted SSH-1
analogues, TIS and CryptoCard) are not only sanitised but also
line-length limited and surrounded by uncounterfeitable headers, like
I've just done to the authentication banners.
This should mean that if a malicious server tries to fake the local
passphrase prompt (perhaps because it's somehow already got a copy of
your _encrypted_ private key), you can tell the difference.
The executables were already ignoring it.
This is a minimal change; PUTTY.HLP can still be built, and there's
still all the context IDs lying around.
Buildscr changes are untested.
With this change, we stop expecting to find putty.chm alongside the
executable file. That was a security hazard comparable to DLL
hijacking, because of the risk that a malicious CHM file could be
dropped into the same directory as putty.exe (e.g. if someone ran
PuTTY from their browser's download dir)..
Instead, the standalone putty.exe (and other binaries needing help)
embed the proper CHM file within themselves, as a Windows resource,
and if called on to display the help then they write the file out to a
temporary location. This has the advantage that if you download and
run the standalone putty.exe then you actually _get_ help, which
previously didn't happen!
The versions of the binaries in the installer don't each contain a
copy of the help file; that would be extravagant. Instead, the
installer itself writes a registry entry pointing at the proper help
file, and the executables will look there.
Another effect of this commit is that I've withdrawn support for the
older .HLP format completely. It's now entirely outdated, and
supporting it through this security fix would have been a huge pain.
Now instead of taking raw arguments to configure the output
StripCtrlChars with, it takes an enumerated value giving the context
of what's being sanitised, and allows the seat to decide what the
output parameters for that context should be.
The only context currently used is SIC_BANNER (SSH login banners).
I've also added a not-yet-used one for keyboard-interactive prompts.
Now if a pathname ends with a slash already, we detect that (using the
shiny new ptrlen_endswith), and don't bother putting another one in.
No functional change, but this should improve the occasional error
message, e.g. 'pscp remote:some.filename /' will now say it can't
create /some.filename instead of //some.filename.
Local functions in uxcons.c and wincons.c were calling the old
simplistic sanitise_term_data to print console-based prompts. Now they
use the same new system as everything else.
This removes the last use of the ASCII-centric sanitise_term_data.
If centralised code like the SSH implementation wants to sanitise
escape sequences out of a piece of server-provided text, it will need
to do it by making a locale-based StripCtrlChars if it's running in a
console context, or a Terminal-based one if it's in a GUI terminal-
window application.
All the other changes of behaviour needed between those two contexts
are handled by providing reconfigurable methods in the Seat vtable;
this one is no different. So now there's a new method in the Seat
vtable that will construct a StripCtrlChars appropriate to that kind
of seat. Terminal-window seats (gtkwin.c, window.c) implement it by
calling the new stripctrl_new_term(), and console ones use the locale-
based stripctrl_new().
If a proxy command jabbers on standard error in a way that doesn't
involve any newline characters, we now won't keep buffering data for
ever.
(Not that I've heard of it happening, but I noticed the theoretical
possibility on the way past in a recent cleanup pass.)