In order to list cross-certifiable host keys in the GUI specials menu,
the SSH backend has been inventing new values on the end of the
Telnet_Special enumeration, starting from the value TS_LOCALSTART.
This is inelegant, and also makes it awkward to break up special
handlers (e.g. to dispatch different specials to different SSH
layers), since if all you know about a special is that it's somewhere
in the TS_LOCALSTART+n space, you can't tell what _general kind_ of
thing it is. Also, if I ever need another open-ended set of specials
in future, I'll have to remember which TS_LOCALSTART+n codes are in
which set.
So here's a revamp that causes every special to take an extra integer
argument. For all previously numbered specials, this argument is
passed as zero and ignored, but there's a new main special code for
SSH host key cross-certification, in which the integer argument is an
index into the backend's list of available keys. TS_LOCALSTART is now
a thing of the past: if I need any other open-ended sets of specials
in future, I can add a new top-level code with a nicely separated
space of arguments.
While I'm at it, I've removed the legacy misnomer 'Telnet_Special'
from the code completely; the enum is now SessionSpecialCode, the
struct containing full details of a menu entry is SessionSpecial, and
the enum values now start SS_ rather than TS_.
Originally, it controlled whether ssh.c should send terminal messages
(such as login and password prompts) to terminal.c or to stderr. But
we've had the from_backend() abstraction for ages now, which even has
an existing flag to indicate that the data is stderr rather than
stdout data; applications which set FLAG_STDERR are precisely those
that link against uxcons or wincons, so from_backend will do the
expected thing anyway with data sent to it with that flag set. So
there's no reason ssh.c can't just unconditionally pass everything
through that, and remove the special case.
FLAG_STDERR was also used by winproxy and uxproxy to decide whether to
capture standard error from a local proxy command, or whether to let
the proxy command send its diagnostics directly to the usual standard
error. On reflection, I think it's better to unconditionally capture
the proxy's stderr, for three reasons. Firstly, it means proxy
diagnostics are prefixed with 'proxy:' so that you can tell them apart
from any other stderr spew (which used to be particularly confusing if
both the main application and the proxy command were instances of
Plink); secondly, proxy diagnostics are now reliably copied to packet
log files along with all the other Event Log entries, even by
command-line tools; and thirdly, this means the option to suppress
proxy command diagnostics after the main session starts will actually
_work_ in the command-line tools, which it previously couldn't.
A more minor structure change is that copying of Event Log messages to
stderr in verbose mode is now done by wincons/uxcons, instead of
centrally in logging.c (since logging.c can now no longer check
FLAG_STDERR to decide whether to do it). The total amount of code to
do this is considerably smaller than the defensive-sounding comment in
logevent.c explaining why I did it the other way instead :-)
Now there's a centralised routine in misc.c to do the sanitisation,
which copies data on to an outgoing bufchain. This allows me to remove
from_backend_untrusted() completely from the frontend API, simplifying
code in several places.
Two use cases for untrusted-terminal-data sanitisation were in the
terminal.c prompts handler, and in the collection of SSH-2 userauth
banners. Both of those were writing output to a bufchain anyway, so
it was very convenient to just replace a bufchain_add with
sanitise_term_data and then not have to worry about it again.
There was also a simplistic sanitiser in uxcons.c, which I've now
replaced with a call to the good one - and in wincons.c there was a
FIXME saying I ought to get round to that, which now I have!
Clients outside ssh.c - all implementations of Channel - will now not
see the ssh_channel data type itself, but only a subobject of the
interface type SshChannel. All the sshfwd_* functions have become
methods in that interface type's vtable (though, wrapped in the usual
kind of macros, the call sites look identical).
This paves the way for me to split up the SSH-1 and SSH-2 connection
layers and have each one lay out its channel bookkeeping structure as
it sees fit; as long as they each provide an implementation of the
sshfwd_ method family, the types behind that need not look different.
A minor good effect of this is that the sshfwd_ methods are no longer
global symbols, so they don't have to be stubbed in Unix Pageant to
get it to compile.
Most of these were 'void *' because they weren't even reliably a
structure type underneath - the per-OS storage systems would directly
cast read/write/enum settings handles to and from random things like
FILE *, Unix DIR *, or Windows HKEY. So I've wrapped them in tiny
structs for the sake of having a sensible structure tag visible
elsewhere in the code.
'struct draw_ctx' has a structure tag inside gtkwin.c, so as per this
week's standard practice, let's expose the tag elsewhere so that
pointers declared that way can't be confused with anything else.
This was a particularly confusing piece of type-danger, because three
different types were passed outside sshshare.c as 'void *' and only
human vigilance prevented one coming back as the wrong one. Now they
all keep their opaque structure tags when they move through other
parts of the code.
There's now an interface called 'Channel', which handles the local
side of an SSH connection-layer channel, in terms of knowing where to
send incoming channel data to, whether to close the channel, etc.
Channel and the previous 'struct ssh_channel' mutually refer. The
latter contains all the SSH-specific parts, and as much of the common
logic as possible: in particular, Channel doesn't have to know
anything about SSH packet formats, or which SSH protocol version is in
use, or deal with all the fiddly stuff about window sizes - with the
exception that x11fwd.c's implementation of it does have to be able to
ask for a small fixed initial window size for the bodgy system that
distinguishes upstream from downstream X forwardings.
I've taken the opportunity to move the code implementing the detailed
behaviour of agent forwarding out of ssh.c, now that all of it is on
the far side of a uniform interface. (This also means that if I later
implement agent forwarding directly to a Unix socket as an
alternative, it'll be a matter of changing just the one call to
agentf_new() that makes the Channel to plug into a forwarding.)
This is another major source of unexplained 'void *' parameters
throughout the code.
In particular, the currently unused testback.c actually gave the wrong
pointer type to its internal store of the frontend handle - it cast
the input void * to a Terminal *, from which it got implicitly cast
back again when calling from_backend, and nobody noticed. Now it uses
the right type internally as well as externally.
Nearly every part of the code that ever handles a full backend
structure has historically done it using a pair of pointer variables,
one pointing at a constant struct full of function pointers, and the
other pointing to a 'void *' state object that's passed to each of
those.
While I'm modernising the rest of the code, this seems like a good
time to turn that into the same more or less type-safe and less
cumbersome system as I'm using for other parts of the code, such as
Socket, Plug, BinaryPacketProtocol and so forth: the Backend structure
contains a vtable pointer, and a system of macro wrappers handles
dispatching through that vtable.
Same principle again - the more of these structures have globally
visible tags (even if the structure contents are still opaque in most
places), the fewer of them I can mistake for each other.
That's one fewer anonymous 'void *' which might be accidentally
confused with some other pointer type if I misremember the order of
function arguments.
While I'm here, I've made its pointer-nature explicit - that is,
'Ldisc' is now a typedef for the structure type itself rather than a
pointer to it. A stylistic change only, but it feels more natural to
me these days for a thing you're going to eventually pass to a 'free'
function.
This commit adds the new ids and fingerprints in the keys appendix of
the manual, and moves the old ones down into the historic-keys
section. I've tweaked a few pieces of wording for ongoing use, so that
they don't imply a specific number of past key rollovers.
The -pgpfp option in all the tools now shows the new Master Key
fingerprint and the previous (2015) one. I've adjusted all the uses of
the #defines in putty.h so that future rollovers should only have to
modify the #defines themselves.
Most importantly, sign.sh bakes in the ids of the current release and
snapshot keys, so that snapshots will automatically be signed with the
new snapshot key and the -r option will invoke the new release key.
This formalises my occasional habit of using a single malloc to make a
block that contains a header structure and a data buffer that a field
of the structure will point to, allowing it to be freed in one go
later. Previously I had to do this by hand, losing the type-checking
advantages of snew; now I've written an snew-style macro to do the
job, plus an accessor macro to cleanly get the auxiliary buffer
pointer afterwards, and switched existing instances of the pattern
over to using that.
The general wisdom these days - in particular as given by the Linux
urandom(4) man page - seems to be that there's no need to use the
blocking /dev/random any more unless you're running at very early boot
time when the system random pool is at serious risk of not having any
entropy in it at all.
In case of non-Linux systems that don't think /dev/urandom is a
standard name, I fall back to /dev/random if /dev/urandom can't be
found.
This parameter returned a substring of the input, which was used for
two purposes. Firstly, it was used to hash the host and server keys
during the initial SSH-1 key setup phase; secondly, it was used to
check the keys in Pageant against the public key blob of a key
specified on the command line.
Unfortunately, those two purposes didn't agree! The first one needs
just the bare key modulus bytes (without even the SSH-1 mpint length
header); the second needs the entire key blob. So, actually, it seems
to have never worked in SSH-1 to say 'putty -i keyfile' and have PuTTY
find that key in Pageant and not have to ask for the passphrase to
decrypt the version on disk.
Fixed by removing that parameter completely, which simplifies all the
_other_ call sites, and replacing it by custom code in those two
places that each does the actually right thing.
There are several old functions that the previous commits have removed
all, or nearly all, of the references to. match_ssh_id is superseded
by ptrlen_eq_string; get_ssh_{string,uint32} is yet another replicated
set of decode functions (this time _partly_ centralised into misc.c);
the old APIs for the SSH-1 RSA decode functions are gone (together
with their last couple of holdout clients), as are
ssh{1,2}_{read,write}_bignum and ssh{1,2}_bignum_length.
Particularly odd was the use of ssh1_{read,write}_bignum in the SSH-2
Diffie-Hellman implementation. I'd completely forgotten I did that!
Now replaced with a raw bignum_from_bytes, which is simpler anyway.
Like the corresponding rewrite of conf serialisation, this affects not
just conf_deserialise itself but also the per-platform filename and
fontspec deserialisers.
Now I've got FROMFIELD, I can rework it so that structures providing
an implementation of the Socket or Plug trait no longer have to have
the vtable pointer as the very first thing in the structure. In
particular, this means that the ProxySocket structure can now directly
implement _both_ the Socket and Plug traits, which is always
_logically_ how it's worked, but previously it had to be implemented
via two separate structs linked to each other.
This is a cleanup I started to notice a need for during the BinarySink
work. It removes a lot of faffing about casting things to char * or
unsigned char * so that some API will accept them, even though lots of
such APIs really take a plain 'block of raw binary data' argument and
don't care what C thinks the signedness of that data might be - they
may well reinterpret it back and forth internally.
So I've tried to arrange for all the function call APIs that ought to
have a void * (or const void *) to have one, and those that need to do
pointer arithmetic on the parameter internally can cast it back at the
top of the function. That saves endless ad-hoc casts at the call
sites.
This removes a lot of pointless duplications of those constants.
Of course, _ideally_, I should upgrade to C99 bool throughout the code
base, replacing TRUE and FALSE with true and false and tagging
variables explicitly as bool when that's what they semantically are.
But that's a much bigger piece of work, and shouldn't block this
trivial cleanup!
This simplifies the client code both in ssh.c and in the client side
of Pageant.
I've cheated a tiny bit by preparing agent requests in a strbuf that
has space reserved at the front for the packet frame, which makes life
easier for the code that sends them off.
This affects all the functions that generate public and private key
and signature blobs of all kinds, plus ssh_ecdhkex_getpublic. Instead
of returning a bare block of memory and taking an extra 'int *length'
parameter, all these functions now write to a BinarySink, and it's the
caller's job to have prepared an appropriate one where they want the
output to go (usually a strbuf).
The main value of this change is that those blob-generation functions
were chock full of ad-hoc length-counting and data marshalling. You
have only to look at rsa2_{public,private}_blob, for example, to see
the kind of thing I was keen to get rid of!
Now instead of iterating through conf twice in separate functions,
once to count up the size of the serialised data and once to write it
out, I just go through once and dump it all in a strbuf.
(Of course, I could still do a two-pass count-then-allocate approach
easily enough in this system; nothing would stop me writing a
BinarySink implementation that didn't actually store any data and just
counted its size, and then I could choose at each call site whether I
preferred to do it that way.)
In fact, those functions don't even exist any more. The only way to
get data into a primitive hash state is via the new put_* system. Of
course, that means put_data() is a viable replacement for every
previous call to one of the per-hash update functions - but just
mechanically doing that would have missed the opportunity to simplify
a lot of the call sites.
This centralises a few things that multiple header files were
previously defining, and were protecting against each other's
redefinition with ifdefs - small things like structs and typedefs. Now
all those things are in a defs.h which is by definition safe to
include _first_ (out of all the codebase-local headers) and only need
to be defined once.
Lots of functions had really generic names (like 'makekey'), or names
that missed out an important concept (like 'rsakey_pubblob', which
loads a public blob from a _file_ and doesn't generate it from an
in-memory representation at all). Also, the opaque 'int order' that
distinguishes the two formats of public key blob is now a mnemonic
enumeration, and while I'm at it, rsa_ssh1_public_blob takes one of
those as an extra argument.
This seems to be a knock-on effect of my recent reworking of the SSH
code to be based around queues and callbacks. The loop iteration
function in uxsftp.c (ssh_sftp_do_select) would keep going round its
select loop until something had happened on one of its file
descriptors, and then return to the caller in the assumption that the
resulting data might have triggered whatever condition the caller was
waiting for - and if not, then the caller checks, finds nothing
interesting has happened, and resumes looping with no harm done.
But now, when something happens on an fd, it doesn't _synchronously_
trigger the follow-up condition PSFTP was waiting for (which, at
startup time, happens to be back->sendok() starting to return TRUE).
Instead, it schedules a callback, which will schedule a callback,
which ... ends up setting that flag. But by that time, the loop
function has already returned, the caller has found nothing
interesting and resumed looping, and _now_ the interesting thing
happens but it's too late because ssh_sftp_do_select will wait until
the next file descriptor activity before it next returns.
Solution: give run_toplevel_callbacks a return value which says
whether it's actually done something, and if so, return immediately in
case that was the droid the caller was looking for. As it were.
In commit 528513dde I absentmindedly replaced a write to the local
variable 'need_size' of drawing_area_setup with a write to
inst->drawing_area_setup_needed, imagining that they had the same
effect. But actually, need_size was doing two jobs and I only replaced
one of them: it was also the variable that indicated that the logical
terminal size had changed and so we had to call term_size() to make
the terminal.c data structures resize themselves appropriately. The
loss of that call also inhibited generation of SIGWINCH.
NFC for the moment, because the bufchain is always specially
constructed to hold exactly the same data that would have been passed
in to the function as a (pointer,length) pair. But this API change
allows get_userpass_input to express the idea that it consumed some
but not all of the data in the bufchain, which means that later on
I'll be able to point the same function at a longer-lived bufchain
containing the full stream of keyboard input and avoid dropping
keystrokes that arrive too quickly after the end of an interactive
password prompt.
NFC: this is a preliminary refactoring, intended to make my life
easier when I start changing around the APIs used to pass user
keyboard input around. The fewer functions even _have_ such an API,
the less I'll have to do at that point.
Changing the window's font size with Alt-< or Alt-> was not setting
any of the flags that make drawing_area_setup consider itself to have
been non-spuriously called, so the real window would enlarge without
the backing surface also doing so.
Since Pageant contains its own passphrase prompt system rather than
delegating it to another process, it's not trivial to use it in other
contexts. But having gone to the effort of coming up with my own
askpass system that (I think) does a better job at not revealing the
length of the password, I _want_ to use it in other contexts where a
GUI passphrase or password prompt is needed. Solution: an --askpass
option.
Mostly for debugging purposes, because I'm tired of having to use
'setsid' to force Pageant to select the GUI passphrase prompt when I'm
trying to fix bugs in gtkask.c. But I can also imagine situations in
which the ability to force a GUI prompt window might be useful to end
users, for example if the process does _technically_ have a
controlling terminal but it's not a user-visible one (say, in the back
end of some automation tool like expect(1)).
For symmetry, I also provide an option to force the tty prompt. That's
less obviously useful, because that's already the preferred prompt
type when both methods are available - so the only use for it would be
if you wanted to ensure that Pageant didn't _accidentally_ try to
launch a GUI prompt, and aborted with an error if it couldn't use a
tty prompt.
I've found Unix Pageant's GTK password prompt to be a bit flaky on
Ubuntu 18.04. Part of the reason for that seems to be (I _think_) that
GTK has changed its internal order of setting things up, so that you
can no longer call gtk_widget_show_now() and expect that when it
returns everything is ready to do a gdk_seat_grab. Another part is
that - completely mysteriously as far as I can see - a _failed_
gdk_seat_grab(GDK_SEAT_CAPABILITY_KEYBOARD) has the side effect of
calling gdk_window_hide on the window you gave it!
So I've done a considerable restructuring that means we no longer
attempt to do the keyboard grab synchronously in gtk_askpass_setup.
Instead, we make keyboard grab attempts during the run of gtk_main,
scheduling each one on a timer if the previous attempt fails.
This means I need a visual indication of 'not ready for you to type
anything yet', which I've arranged by filling in the three drawing
areas to mid-grey. At the point when the keyboard grab completes and
the window becomes receptive to input, they turn into the usual one
black and two white.
In GTK 3.10 and above, high-DPI support is arranged by each window
having a property called a 'scale factor', which translates logical
pixels as seen by most of the GTK API (widget and window sizes and
positions, coordinates in the "draw" event, etc) into the physical
pixels on the screen. This is handled more or less transparently,
except that one side effect is that your Cairo-based drawing code had
better be able to cope with that scaling without getting confused.
PuTTY's isn't, because we do all our serious drawing on a separate
Cairo surface we made ourselves, and then blit subrectangles of that
to the window during updates. This has two bad consequences. Firstly,
our surface has a size derived from what GTK told us the drawing area
size is, i.e. corresponding to GTK's _logical_ pixels, so when the
scale factor is (say) 2, our drawing takes place at half size and then
gets scaled up by the final blit in the draw event, making it look
blurry and unpleasant. Secondly, those final blits seem to end up
offset by half a pixel, so that a second blit over the same
subrectangle doesn't _quite_ completely wipe out the previously
blitted data - so there's a ghostly rectangle left behind everywhere
the cursor has been.
It's not that GTK doesn't _let_ you find out the scale factor; it's
just that it's in an out-of-the-way piece of API that you have to call
specially. So now we do: our backing surface is now created at a pixel
resolution matching the screen's real pixels, and we translate GTK's
scale factor into an ordinary cairo_scale() before we commence
drawing. So we still end up drawing the same text at the same size -
and this strategy also means that non-text elements like cursor
outlines and underlining will be scaled up with the screen DPI rather
than stubbornly staying one physical pixel thick - but now it's nice
and sharp at full screen resolution, and the subrectangle blits in the
draw event are back to affecting the exact set of pixels we expect
them to.
One silly consequence is that, immediately after removing the last
one, I've installed a handler for the GTK "configure-event" signal!
That's because the GTK 3 docs claim that that's how you get notified
that your scale factor has changed at run time (e.g. if you
reconfigure the scale factor of a whole monitor in the GNOME settings
dialog). Actually in practice I seem to find out via the "draw" event
before "configure" bothers to tell me, but now I've got a usefully
idempotent function for 'check whether the scale factor has changed
and sort it out if so', I don't see any harm in calling it from
anywhere it _might_ be useful.
I've been using that signal since the very first commit of this source
file, as a combined way to be notified when the size of the drawing
area changes (typically due to user window resizing actions) and also
when the drawing area is first created and available to be drawn on.
Unfortunately, testing on Ubuntu 18.04, I ran into an oddity, in which
the call to gtk_widget_show(inst->window) in new_session_window() has
the side effect of delivering a spurious configure_event on the
drawing area with size 1x46 pixels. This causes the terminal to resize
itself to 1 column wide, and the mistake isn't rectified until a
followup configure-event arrives after new_session_window returns to
the GTK main loop. But that means terminal output can occur between
those two configure events (the connection-sharing "Reusing a shared
connection to host.name" is a good example), and when it does, it gets
embarrassingly wrapped at one character per line down the left column.
I briefly tried to bodge around this by trying to heuristically guess
which configure events were real and which were spurious, but I have
no faith in that strategy continuing to work. I think a better
approach is to abandon configure-event completely, and move to a
system in which the two purposes I was using it for are handled by two
_different_ GTK signals, namely "size-allocate" (for knowing when we
get resized) and "realize" (for knowing when the drawing area
physically exists for us to start setting up Cairo or GDK machinery).
The result seems to have fixed the silly one-column wrapping bug, and
retained the ability to handle window resizes, on every GTK version I
have conveniently available to test on, including GTK 3 both before
and after these spurious configures started to happen.
GTK 3 PuTTY/pterm has always assumed that if it was compiled with
_support_ for talking to the raw X11 layer underneath GTK and GDK,
then it was entitled to expect that raw X11 layer to exist at all
times, i.e. that GDK_DISPLAY_XDISPLAY would return a meaningful X
display that it could do useful things with. So if you ran it over the
GDK Wayland backend, it would immediately segfault.
Modern GTK applications need to cope with multiple GDK backends at run
time. It's fine for GTK PuTTY to _contain_ the code to find and use
underlying X11 primitives like the display and the X window id, but it
should be prepared to find that it's running on Wayland (or something
else again!) so those functions don't return anything useful - in
which case it should degrade gracefully to the subset of functionality
that can be accessed through backend-independent GTK calls.
Accordingly, I've centralised the use of GDK_DISPLAY_XDISPLAY into a
support function get_x_display() in gtkmisc.c, which starts by
checking that there actually is one first. All previous direct uses of
GDK_*_XDISPLAY now go via that function, and check the result for NULL
afterwards. (To save faffing about calling that function too many
times, I'm also caching the display pointer in more places, and
passing it as an extra argument to various subfunctions, mostly in
gtkfont.c.)
Similarly, the get_windowid() function that retrieves the window id to
put in the environment of pterm's child process has to be prepared for
there not to be a window id.
This isn't a complete fix for all Wayland-related problems. The other
one I'm currently aware of is that the default font is "server:fixed",
which is a bad default now that it won't be available on all backends.
And I expect that further problems will show up with more testing. But
it's a start.
This is a heavily edited (by me) version of a patch originally due to
Nico Williams and Viktor Dukhovni. Their comments:
* Don't delegate credentials when rekeying unless there's a new TGT
or the old service ticket is nearly expired.
* Check for the above conditions more frequently (every two minutes
by default) and rekey when we would delegate credentials.
* Do not rekey with very short service ticket lifetimes; some GSSAPI
libraries may lose the race to use an almost expired ticket. Adjust
the timing of rekey checks to try to avoid this possibility.
My further comments:
The most interesting thing about this patch to me is that the use of
GSS key exchange causes a switch over to a completely different model
of what host keys are for. This comes from RFC 4462 section 2.1: the
basic idea is that when your session is mostly bidirectionally
authenticated by the GSSAPI exchanges happening in initial kex and
every rekey, host keys become more or less vestigial, and their
remaining purpose is to allow a rekey to happen if the requirements of
the SSH protocol demand it at an awkward moment when the GSS
credentials are not currently available (e.g. timed out and haven't
been renewed yet). As such, there's no need for host keys to be
_permanent_ or to be a reliable identifier of a particular host, and
RFC 4462 allows for the possibility that they might be purely
transient and only for this kind of emergency fallback purpose.
Therefore, once PuTTY has done a GSS key exchange, it disconnects
itself completely from the permanent host key cache functions in
storage.h, and instead switches to a _transient_ host key cache stored
in memory with the lifetime of just that SSH session. That cache is
populated with keys received from the server as a side effect of GSS
kex (via the optional SSH2_MSG_KEXGSS_HOSTKEY message), and used if
later in the session we have to fall back to a non-GSS key exchange.
However, in practice servers we've tested against do not send a host
key in that way, so we also have a fallback method of populating the
transient cache by triggering an immediate non-GSS rekey straight
after userauth (reusing the code path we also use to turn on OpenSSH
delayed encryption without the race condition).
Colin Watson reports that on pre-releases of Ubuntu 18.04, configure
events which don't actually involve a change of window size show up
annoyingly often. Our handling of configure events involves throwing
away the backing Cairo surface, making a fresh blank one, and
scheduling a top-level callback to get terminal.c to do a repaint and
populate the new surface; so a draw event before that callback occurs
causes the window contents to flicker off and on again, not to mention
wasting a lot of time.
The simplest solution is to spot spurious configures, and respond by
not throwing away the previous Cairo surface in the first place.
Except in GTK1 (which doesn't have the former), via a gtkcompat.h
workaround.
Up-to-date GTK3 has deprecated gdk_beep(), causing build failures due
to the default -Werror setting.
Looks as if I haven't retried the GTK1 build for a while, and recent
GTK frontend development has broken it. The selection revamp has
pointed out that GTK1 didn't have the accessor function
gtk_selection_data_get_selection(), the standard GdkAtom value
GDK_SELECTION_CLIPBOARD, or keysyms for alphabetic characters; and
also I had an initialisation of one of my own structure fields
(dp->selparams) accidentally not guarded by the same GTK-versioning
ifdef that controls whether or not it was defined.
Ahem. I _spotted_ this in code review, and forgot to make the change
before pushing!
Because it's legitimate for a C implementation to define 'NULL' so
that it expands to just 0, it follows that if you use NULL in a
variadic argument list where the callee will expect to extract a
pointer, you run the risk of putting an int-sized rather than
pointer-sized argument on the list and causing the consumer to get out
of sync. So you have to add an explicit cast.
The PuTTY GUIs (Unix and Windows) maintain an in-memory event log
for display to users as they request. This uses ints for tracking
eventlog size, which is subject to memory exhaustion and (given
enough heap space) overflow attacks by servers (via, e.g., constant
rekeying).
Also a bounded log is more user-friendly. It is rare to want more
than the initial logging and the logging from a few recent rekey
events.
The Windows fix has been tested using Dr. Memory as a valgrind
substitute. No errors corresponding to the affected code showed up.
The Dr. Memory results.txt was split into a file per-error and then
grep Error $(grep -l windlg *)|cut -d: -f3-|sort |uniq -c
was used to compare. Differences arose from different usage of the GUI,
but no error could be traced to the code modified in this commit.
The Unix fix has been tested using valgrind. We don't destroy the
eventlog_stuff eventlog arrays, so we can't be entirely sure that we
don't leak more than we did before, but from code inspection it looks
like we don't (and anyways, if we leaked as much as before, just without
the integer overflow, well, that's still an improvement).
Now we don't annoyingly print the 'askappend' prompt if you ask a
PuTTY tool to write its packet log to something that's not a regular
file, such as /dev/fd/1 or /dev/tty or a named pipe.
(In the case of a named pipe, another annoyance fixed by this change
is that we also don't open it for reading in the course of the
existence test.)