I recently encountered a paper [1] which catalogues all kinds of
things that can go wrong when one party in a discrete-log system
invents a prime and the other party chooses an exponent. In
particular, some choices of prime make it reasonable to use a short
exponent to save time, but others make that strategy very bad.
That paper is about the ElGamal encryption scheme used in OpenPGP,
which is basically integer Diffie-Hellman with one side's key being
persistent: a shared-secret integer is derived exactly as in DH, and
then it's used to communicate a message integer by simply multiplying
the shared secret by the message, mod p.
I don't _know_ that any problem of this kind arises in the SSH usage
of Diffie-Hellman: the standard integer DH groups in SSH are safe
primes, and as far as I know, the usual generation of prime moduli for
DH group exchange also picks safe primes. So the short exponents PuTTY
has been using _should_ be OK.
However, the range of imaginative other possibilities shown in that
paper make me nervous, even so! So I think I'm going to retire the
short exponent strategy, on general principles of overcaution.
This slows down 4096-bit integer DH by about a factor of 3-4 (which
would be worse if it weren't for the modpow speedup in the previous
commit). I think that's OK, because, firstly, computers are a lot
faster these days than when I originally chose to use short exponents,
and secondly, more and more implementations are now switching to
elliptic-curve DH, which is unaffected by this change (and with which
we've always been using maximum-length exponents).
[1] On the (in)security of ElGamal in OpenPGP. Luca De Feo, Bertram
Poettering, Alessandro Sorniotti. https://eprint.iacr.org/2021/923
Instead of the basic square-and-multiply strategy which requires a
square and a multiply per exponent bit (i.e. two modular
multiplications per bit in total), we instead reduce to a square per
exponent bit and an extra multiply only every 5 bits, because the
value we're multiplying in is derived from 5 of the exponent bits at
once via a table lookup.
To avoid the obvious side-channel leakage of a literal table lookup,
we read the whole table every time, mp_selecting the right value into
the multiplication input. This isn't as slow as it sounds when the
alternative is four entire modular multiplications! In my testing,
this commit speeds up large modpows by a factor of just over 1.5, and
it still gets a clean pass from 'testsc'.
It's unquestionably a test program, and I'm generally clearing those
out of the top level. I only missed it in the last clearout because I
was looking for things with 'test' in the name.
They were there to work around that annoying feature of VS's
preprocessor when it expands __VA_ARGS__ into the argument list of
another macro. But I've just thought of a workaround that I can apply
in testcrypt.c itself, so that those parens don't have to appear in
every function definition in the header file.
The trick is, instead of writing
destination_macro(__VA_ARGS__)
you instead write
JUXTAPOSE(destination_macro, (__VA_ARGS__))
where JUXTAPOSE is defined to be a macro that simply expands its two
arguments next to each other:
#define JUXTAPOSE(first, second) first second
This works because the arguments to JUXTAPOSE get macro-expanded
_before_ passing them to JUXTAPOSE itself - the same reason that the
standard tricks with STR_INNER and CAT_INNER work (as seen in defs.h
here). So this defuses the magic behaviour of commas expanded from
__VA_ARGS__, and causes the destination macro to get all its arguments
in the expected places again.
I was dubious about it to begin with, when I found that RFC 7616's
example seemed to be treating it as a 256-bit truncation of SHA-512,
and not the thing FIPS 180-4 section 6.7 specifies as "SHA-512/256"
(which also changes the initial hash state). Having failed to get a
clarifying response from the RFC authors, I had the idea this morning
of testing other HTTP clients to see what _they_ thought that hash
function meant, and then at least I could go with an existing
in-practice consensus.
There is no in-practice consensus. Firefox doesn't support that
algorithm at all (but they do support SHA-256); wget doesn't support
anything that RFC 7616 added to the original RFC 2617. But the prize
for weirdness goes to curl, which does accept the name "SHA-512-256"
and ... treats it as an alias for SHA-256!
So I think the situation among real clients is too confusing to even
try to work with, and I'm going to stop adding to it. PuTTY will
follow Firefox's policy: if a proxy server asks for SHA-256 digests
we'll happily provide them, but if they ask for SHA-512-256 we'll
refuse on the grounds that it's not clear enough what it means.
This commit replaces all those fiddly little linking modules
(be_all.c, be_none.c, be_ssh.c etc) with a single source file
controlled by ifdefs, and introduces a function be_list() in
setup.cmake that makes it easy to compile a version of it appropriate
to each application.
This is a net reduction in code according to 'git diff --stat', even
though I've introduced more comments. It also gets rid of another pile
of annoying little source files in the top-level directory that didn't
deserve to take up so much room in 'ls'.
More concretely, doing this has some maintenance advantages.
Centralisation means less to maintain (e.g. n_ui_backends is worked
out once in a way that makes sense everywhere), and also, 'appname'
can now be reliably set per program. Previously, some programs got the
wrong appname due to sharing the same linking module (e.g. Plink had
appname="PuTTY"), which was a latent bug that would have manifested if
I'd wanted to reuse the same string in another context.
One thing I've changed in this rework is that Windows pterm no longer
has the ConPTY backend in its backends[]: it now has an empty one. The
special be_conpty.c module shouldn't really have been there in the
first place: it was used in the very earliest uncommitted drafts of
the ConPTY work, where I was using another method of selecting that
backend, but now that Windows pterm has a dedicated
backend_vt_from_conf() that refers to conpty_backend by name, it has
no need to live in backends[] at all, just as it doesn't have to in
Unix pterm.
I'm actually quite surprised there was only _one_ copy of each of
these standard macros in the code base, given my general habit of
casually redefining them anywhere I need them! But each one was in a
silly place. Moved them up to the top level where they're available
globally.
While I'm in the mood for cleaning up the top-level directory here:
all the 'nostuff.c' files have moved into a new 'stubs' directory, and
I broke up be_misc.c into smaller modules that can live in 'utils'.
Now testcrypt has _two_ header files, that's more files than I want at
the top level, so I decided to move it.
It has a good claim to live in either 'test' or 'crypto', but in the
end I decided it wasn't quite specific enough to crypto (it already
also tests things in keygen and proxy), and also, the Python half of
the mechanism already lives in 'test', so it can live alongside that.
Having done that, it seemed silly to leave testsc and testzlib at the
top level: those have 'test' in the names as well, so they can go in
the test subdir as well.
While I'm renaming, also renamed testcrypt.h to testcrypt-func.h to
distinguish it from the new testcrypt-enum.h.
This allows the Python side of testcrypt to check in advance if a
given string is a valid element of an enumeration, and if not, cleanly
throw a Python-level exception without terminating the testcrypt
subprocess.
Should be useful in both manual use (when I'm trying something out by
hand and make a typo or misremember a spelling), and automated use (if
I make the same kind of error in cryptsuite.py then the exception dump
will make more sense).
In order to do this, the new handle_checkenum() function has to
recognise all the enumerated types by name and match them up to their
lookup functions - which is just the kind of thing that can now be
done easily be reincluding testcrypt-enum.h with different #defines.
Now all the lookup functions like get_hashalg() and
get_primegenpolicy() are autogenerated by macro expansion from a
header a little like the existing testcrypt.h. But the macros are much
simpler this time.
This doesn't really change anything, _except_ that now I'll be able to
reinclude the same header to do other things with the list of
enumerated types.
This slightly simplifies the lookup function get_dh_group(), but
mostly, the point is to make it more similar to the other lookup
functions, because I'm planning to have those autogenerated.
Now those names appear in help files, I thought it was worth giving
them a read-through and spotting any really obviously confusing or
wrong ones. Quite a few make more sense in the original context of C
than in the derived Python (e.g. 'BinarySink *bs' as a place to write
output to makes sense, but the output 'val_string bs' is less
helpful).
A couple were so confusing that I also corrected them in the original
C, notably the misuse of 'wc' for the elliptic curve point input to
ecc_weierstrass_point_copy. ('wc' in that section of the code is
normally a parameter describing a whole curve.)
Now that testcrypt.py parses it using a C-like lexer, we don't have
the constraint any more that each function definition has to live on
exactly one source line for the sake of the previous line-by-line
parser. So we can put whitespace wherever we like, and reformat for
legibility!
I've done the initial pass of this using clang-format, which will
optimise for (a) everything fitting in 80 columns, and (b) individual
ARG(...) specifications generally not being broken across lines. Those
seem like a good combination to me.
Making a virtue of the necessity of adding parameter names to
testcrypt.h a couple of commits ago, we can now use those names to
improve diagnostics, so that if you use the wrong type in a Python
function call the error message will tell you the name as well as the
index of the offending argument.
Also, the repr() text for the function itself will now print a full
prototype (albeit in a nasty hybrid of C, Python and testcrypt.h
syntax) which shows all the parameter names. That should be handy when
trying to remember the order of arguments at the REPL prompt.
FUNC_WRAPPED is an alternative keyword to FUNC which you can use to
introduce a function specification in testcrypt.h, indicating that the
function is _not_ the one of the same name used in the main PuTTY
code, but instead a wrapper on it in testcrypt.c whose API was
reworked to be more friendly to translation into Python.
There are a lot of those wrappers already, and previously they passed
without comment in testcrypt.h, and were put into service by #defining
over the top of each name before expanding the marshalling functions.
Now, all those #defines are gone, because the use of FUNC_WRAPPED in
testcrypt.h is enough to clue in the marshalling wrapper to be
generated with a call to foo_wrapper() instead of foo().
Mostly the purpose of this is to make testcrypt.h a bit more
self-documenting: if you see FUNC_WRAPPED, you know not to be confused
by the Python and C function definitions totally failing to match.
Yesterday's commit 52ee636b09 which further extended the huge
pile of arity-specific annoying wrapper macros pushed me over the edge
and inspired me to give some harder thought to finding a way to handle
all arities at once. And this time I found one!
The new technique changes the syntax of the function specifications in
testcrypt.h. In particular, they now have to specify a _name_ for each
parameter as well as a type, because the macros generating the C
marshalling wrappers will need a structure field for each parameter
and cpp isn't flexible enough to generate names for those fields
automatically. Rather than tediously name them arg1, arg2 etc, I've
reused the names of the parameters from the prototypes or definitions
of the underlying real functions (via a one-off auto-extraction
process starting from the output of 'clang -Xclang -dump-ast' plus
some manual polishing), which means testcrypt.h is now a bit more
self-documenting.
The testcrypt.py end of the mechanism is rewritten to eat the new
format. Since it's got more complicated syntax and nested parens and
things, I've written something a bit like a separated lexer/parser
system in place of the previous crude regex matcher, which should
enforce that the whole header file really does conform to the
restricted syntax it has to fit into.
The new system uses a lot less code in testcrypt.c, but I've made up
for that by also writing a long comment explaining how it works, which
was another thing the previous system lacked! Similarly, the new
testcrypt.h has some long-overdue instructions at the top.
Spotted in passing: the cryptsuite test functions iterate 'hashname'
through all the available implementations of SHA-512 (or SHA-384), but
then, in each iteration, ignore that loop variable completely and
always test the default algorithm. So on a platform where more than
one implementation is available, we were only actually testing one of
them. Oops!
In http.c, this drops in reasonably neatly alongside the existing
support for Basic, now that we're waiting for an initial 407 response
from the proxy to tell us which auth mechanism it would prefer to use.
The rest of this patch is mostly contriving to add testcrypt support
for the function in cproxy.c that generates the complicated output
header to go in the HTTP request: you need about a dozen assorted
parameters, the actual response hash has two more hashes in its
preimage, and there's even an option to hash the username as well if
necessary. Much more complicated than CHAP (which is just plain
HMAC-MD5), so it needs testing!
Happily, RFC 7616 comes with some reasonably useful test cases, and
I've managed to transcribe them directly into cryptsuite.py and
demonstrate that my response-generator agrees with them.
End-to-end testing of the whole system was done against Squid 4.13
(specifically, the squid package in Debian bullseye, version 4.13-10).
Now, we always try an initial CONNECT request with no auth at all, and
wait for the proxy to reject it before sending a second try with
auth.
That way, we can wait to see what _kind_ of authentication the proxy
requests, which will enable us to support something more secure than
Basic, such as HTTP Digest.
(I mean, it would _work_ to try Basic in request #1 and then retrying
with Digest in #2 when the proxy asks for it. But if the aim of using
Digest is to avoid sending the password in cleartext, it defeats the
entire purpose to have sent it in cleartext anyway by the time you
realise the server is prepared to do something better!)
In HTTP proxying, we can (and do) send the username and password
immediately in the form of HTTP Basic, if we have them in the Conf.
But if they get rejected, or if we never sent them in the first place
and the server won't let us in without auth, then we get back an HTTP
407 response with a full set of headers and an error-document.
Assuming the HTTP connection doesn't close after that (which in
sensible HTTP/1.1 proxies it won't), this gives us the opportunity to
respond by sending a second CONNECT request, containing a fresh
username and password we just requested interactively from the user.
Probably should have done this a long time ago: when we write the
formatted command into the log file, we now base it on a version in
which CONF_proxy_password has been reset to "*password*", to avoid
writing the actual password (if any) into log files.
The Telnet proxy system is not a proper network protocol - we have no
reliable way to receive communication from the proxy telling us
whether a password is even required. However, we _do_ know (a) whether
the keywords '%user' or '%pass' appeared in the format string stored
in the Conf, and (b) whether we actually had a username or a password
to substitute into them. So that's how we know whether to ask for a
username or a password: if the format string asks for them and the
Conf doesn't provide them, we prompt for them at startup.
This involved turning TelnetProxyNegotiator into a coroutine (matching
all the other proxy types, but previously, it was the only one simple
enough not to need to be one), so that it can wait until a response
arrives to that prompt. (And also, as it turned out, so that it can
wait until setup is finished before even presenting the prompt!)
It also involves having format_telnet_command grow an extra output
parameter, in the form of 'unsigned *flags', with which it can
communicate back to the caller that a username or password was wanted
but not found. The other clients of that function (the local proxy
implementations) don't use those flags, but if necessary, they could.
This fixes the Telnet proxy, which was the only one of the proxy types
I forgot to test when I pushed the previous patch series, and
therefore, naturally, the one I left a bug in: if a ProxyNegotiator
returns both some output to be transmitted _and_ the 'done' flag, we
were forgetting to do anything with the former. So the proxy command
was being carefully constructed by TelnetProxyNegotiator, and then
promptly dropped on the floor by the owning ProxySocket.
I just spotted this in passing, and it's out of date! The prompts_t
system no longer works by consuming user input that had already been
handed to a backend, and it now has a callback that it can use to
proactively notify a backend (or other Interactor) that its prompts
have been answered. So if we did ever want to use a separate GUI
dialog box for prompts (as the comment suggested), then we do now have
the means.
This is the first of the ProxyNegotiator implementations to use the
new interaction system. The other two both need more work than just
inserting a prompt and using the result.
This lays all the groundwork for ProxyNegotiators to be able to issue
username and password prompts: ProxySocket now implements the
Interactor trait, it will borrow and return a Seat if one is
available, and it will present an Interactor of its own to the
ProxyNegotiator which can use it (via interactor_announce as usual) to
get a Seat to send prompts to. Also, proxy.c provides a centralised
system for making a prompts_t with an appropriate callback in it, and
dealing with the results of that callback.
No actual ProxyNegotiator implementation uses it yet, though.
Previously, the proxy negotiation functions were written as explicit
state machines, with ps->state being manually set to a sequence of
positive integer values which would be tested by if statements in the
next call to the same negotiation function.
That's not how this code base likes to do things! We have a coroutine
system to allow those state machines to be implicit rather than
explicit, so that we can use ordinary control flow statements like
while loops. Reorganised each proxy negotiation function into a
coroutine-based system like that.
While I'm at it, I've also moved each proxy negotiator out into its
own source file, to make proxy.c less overcrowded and monolithic. And
_that_ gave me the opportunity to define each negotiator as an
implementation of a trait rather than as a single function - which
means now each one can define its own local variables and have its own
cleanup function, instead of all of them having to share the variables
inside the main ProxySocket struct.
In the new coroutine system, negotiators don't have to worry about the
mechanics of actually sending data down the underlying Socket any
more. The negotiator coroutine just appends to a bufchain (via a
provided bufchain_sink), and after every call to the coroutine,
central code in proxy.c transfers the data to the Socket itself. This
avoids a lot of intermediate allocations within the negotiators, which
previously kept having to make temporary strbufs or arrays in order to
have something to point an sk_write() at; now they can just put
formatted data directly into the output bufchain via the marshal.h
interface.
In this version of the code, I've also moved most of the SOCKS5 CHAP
implementation from cproxy.c into socks5.c, so that it can sit in the
same coroutine as the rest of the proxy negotiation control flow.
That's because calling a sub-coroutine (co-subroutine?) is awkward to
set up (though it is _possible_ - we do SSH-2 kex that way), and
there's no real need to bother in this case, since the only thing that
really needs to go in cproxy.c is the actual cryptography plus a flag
to tell socks5.c whether to offer CHAP authentication in the first
place.
These were just boilerplate in all the proxy negotiation functions:
every negotiator had to contain a handler for each of these events,
and they all handled them in exactly the same way. Remove them and
centralise the handling in the shared code.
A long time ago, some of these event codes were added with purpose in
mind. PROXY_CHANGE_CLOSING was there to anticipate the possibility
that you might need to make multiple TCP connections to the proxy
server (e.g. retrying with different authentication) before
successfully getting a connection you could use to talk to the
ultimate destination. And PROXY_CHANGE_ACCEPTING was there so that we
could use the listening side of SOCKS (where you ask the proxy to open
a listening socket on your behalf). But neither of them has ever been
used, and now that the code has evolved, I think probably if we do
ever need to do either of those things then they'll want to be done
differently.
This seemed like a worthwhile cleanup to do while I was working on
this code anyway. Now all the magic numbers are defined in a header
file by macro names indicating their meaning, and used by both the
SOCKS client code in the proxy subdirectory and the SOCKS server code
in portfwd.c.
It's variously 'ps' and 'p' in functions that already receive one, and
it's 'ret' in the main function that initially constructs one. Let's
call it 'ps' consistently, so that the code idioms are the same
everywhere.
Spotted this in passing while I was adding new functions in the same
area. That 'struct strbuf;' must have been there since before I
introduced defs.h to predeclare all the structure tag names and their
typedefs. But marshal.h includes defs.h itself, so it has no reason to
worry about the possibility that the typedef 'strbuf' might not
already exist.
When I wanted to append an ordinary C string to a BinarySink, without
any prefix length field or suffix terminator, I was using the idiom
put_datapl(bs, ptrlen_from_asciz(string));
but I've finally decided that's too cumbersome, and it deserves a
shorter name. put_dataz(bs, string) now does the same thing - in fact
it's a macro expanding to exactly the above.
While I'm at it, I've also added put_datalit(), which is the same
except that it expects a C string literal (and will enforce that at
compile time, via PTRLEN_LITERAL which it calls in turn). You can use
that where possible to avoid the run-time cost of the strlen.
marshal.h now provides a macro put_fmt() which allows you to write
arbitrary printf-formatted data to an arbitrary BinarySink.
We already had this facility for strbufs in particular, in the form of
strbuf_catf(). That was able to take advantage of knowing the inner
structure of a strbuf to minimise memory allocation (it would snprintf
directly into the strbuf's existing buffer if possible). For a general
black-box BinarySink we can't do that, so instead we dupvprintf into a
temporary buffer.
For consistency, I've removed strbuf_catf, and converted all uses of
it into the new put_fmt - and I've also added an extra vtable method
in the BinarySink API, so that put_fmt can still use strbuf_catf's
more efficient memory management when talking to a strbuf, and fall
back to the simpler strategy when that's not available.
We already had bufchain_try_fetch_consume; now we also have
bufchain_try_fetch (for when you want to wait until that much data is
available but then not commit to removing it), and
bufchain_try_consume (so you can conveniently ignore a certain amount
of incoming data).
I'd added a data length to the 'type' field of output_chunk instead of
the 'size' field.
Caused an assertion failure when I tried a simple SSH proxy operation
on Windows just now, because the output_chunks and the output bufchain
didn't match up, and no wonder. The mystery is how it hasn't been
consistently failing like that since September!
(TL;DR: to suppress redundant 'Press Return to begin session' prompts
in between hops of a jump-host configuration, in Plink.)
This new query method directly asks the Seat the question: is the same
stream of input used to provide responses to interactive login
prompts, and the session input provided after login concludes?
It's used to suppress the last-ditch anti-spoofing defence in Plink of
interactively asking 'Access granted. Press Return to begin session',
on the basis that any such spoofing attack works by confusing the user
about what's a legit login prompt before the session begins and what's
sent by the server after the main session begins - so if those two
things take input from different places, the user can't be confused.
This doesn't change the existing behaviour of Plink, which was already
suppressing the antispoof prompt in cases where its standard input was
redirected from something other than a terminal. But previously it was
doing it within the can_set_trust_status() seat query, and I've now
moved it out into a separate query function.
The reason why these need to be separate is for SshProxy, which needs
to give an unusual combination of answers when run inside Plink. For
can_set_trust_status(), it needs to return whatever the parent Seat
returns, so that all the login prompts for a string of proxy
connections in session will be antispoofed the same way. But you only
want that final 'Access granted' prompt to happen _once_, after all
the proxy connection setup phases are done, because up until then
you're still in the safe hands of PuTTY itself presenting an unbroken
sequence of legit login prompts (even if they come from a succession
of different servers). Hence, SshProxy unconditionally returns 'no' to
the query of whether it has a single mixed input stream, because
indeed, it never does - for purposes of session input it behaves like
an always-redirected Plink, no matter what kind of real Seat it ends
up sending its pre-session login prompts to.
I'd forgotten that the text-only branch of seat_antispoof_msg()
constructs a string from its input in the expectation that it's a
one-line message. So it was a mistake to put a \n at the start of the
string in interactor_announce() to get a blank line first.
Now interactor_announce() makes an extra call to seat_antispoof_msg to
show its blank line, and seat_antispoof_msg itself handles the
blank-line case specially.
This is generated when setup of a network connection is cancelled by
deliberate user action, namely, pressing ^C or ^D or the like at a
get_userpass_input prompt presented during proxy setup.
It's handled just like normal socket setup errors, except that it
omits the call to seat_connection_fatal, on the grounds that in this
one case of connection-setup failure, the user doesn't need to be
_informed_ that the connection failed - they already know, because
they failed it themself on purpose.
Passing an operating-system-specific error code to plug_closing(),
such as errno or GetLastError(), was always a bit weird, given that it
generally had to be handled by cross-platform receiving code in
backends. I had the platform.h implementations #define any error
values that the cross-platform code would have to handle specially,
but that's still not a great system, because it also doesn't leave
freedom to invent error representations of my own that don't
correspond to any OS code. (For example, the ones I just removed from
proxy.h.)
So now, the OS error code is gone from the plug_closing API, and in
its place is a custom enumeration of closure types: normal, error, and
the special case BROKEN_PIPE which is the only OS error code we have
so far needed to handle specially. (All others just mean 'abandon the
connection and print the textual message'.)
Having already centralised the handling of OS error codes in the
previous commit, we've now got a convenient place to add any further
type codes for errors needing special handling: each of Unix
plug_closing_errno(), Windows plug_closing_system_error(), and Windows
plug_closing_winsock_error() can easily grow extra special cases if
need be, and each one will only have to live in one place.
Having a single plug_closing() function covering various kinds of
closure is reasonably convenient from the point of view of Plug
implementations, but it's annoying for callers, who all have to fill
in pointless NULL and 0 parameters in the cases where they're not
used.
Added some inline helper functions in network.h alongside the main
plug_closing() dispatch wrappers, so that each kind of connection
closure can present a separate API for the Socket side of the
interface, without complicating the vtable for the Plug side.
Also, added OS-specific extra helpers in the Unix and Windows
directories, which centralise the job of taking an OS error code (of
whatever kind) and translating it into its error message.
In passing, this removes the horrible ad-hoc made-up error codes in
proxy.h, which is OK, because nothing checked for them anyway, and
also I'm about to do an API change to plug_closing proper that removes
the need for them.
Now we always respond to backend disconnection or connection_fatal by
calling plug_closing. And we always do it in a toplevel callback, so
that when the Plug responds by calling our Socket close method (which
frees us), nothing re-entrant happens.
Also, the handling of notify_remote_disconnect is brought into line
with the spec in putty.h, which says it can be sent redundantly (when
already disconnected) or spuriously (when not even disconnected at
all), so the toplevel callback queued by that method will check first.
After this change, failures during connection_setup are now handled
_mostly_ sensibly: if the proxy connection fails, then the main
connection gets enough information to pass a sensible connection_fatal
on to the real front end.
This also fixes the assertion failure mentioned in the TODO comment,
replacing it with a reasonably sensible connection_fatal() - although
I still think that in that situation it might be better not to have a
dialog box at all.
In interactor_return_seat, I wrote a comment saying that we should
call interactor_announce when handing over to the next Interactor in
the chain, *if* any Interactor had already made any kind of
announcement.
But, having written that comment, I didn't actually *implement* the
'if' clause, and called interactor_announce unconditionally! Now
fixed.
Removed the FIXMEs in various Seat passthrough functions that were
there to remind me to say which SSH connection they referred to: that
is now done by the interactor_announce mechanism, as of commit
215b9d1775. (Though not by modifying the actual passthrough
functions, as it turned out, which is how I didn't find and remove the
FIXMEs when I did all that.)
Also, added a comment in wrap() explaining *why* it's allowed to (in
fact, must) cheat by making an InteractionReadySeat without going
through interactor_announce().
Since it's a manually-enabled bug compatibility mode, AUTO isn't one of
the available UI options.
This was causing Windows PuTTY to display a blank entry in the drop-down
for "Discards data sent before its greeting".
(It is possible that this unhelpful default has escaped into saved
sessions of snapshot users, which would have the same effect, but since
the actual using code can cope with it, I've not done anything to clean
that up.)
Finally, the payoff from all of this refactoring: now, when a proxy
prompts interactively during connection setup, you get a message in
advance telling you which Interactor is originating the following
messages.
To achieve this, I've arranged to link Interactors together into a
list, so that any Interactor created by a proxy has a 'parent' pointer
pointing to the Interactor its client passed to new_connection().
This allows interactor_announce() to follow the links back up the
chain and count them, so that it knows whether it's a primary
connection, or a proxy, or a proxy-for-a-proxy, or more generally an
nth-order proxy, and can include that in its announcement.
And secondly, once interactor_announce() reaches the top of the chain,
it can use that as a storage location agreed on by all Interactors in
the whole setup, to tell each other which one of them was the last to
do anything interactive. Then, whenever there's a change of
Interactor, a message can be printed to indicate it to the user; and
when the same Interactor does multiple things in succession, you don't
get a slew of pointless messages in between them all.