When I maximised a terminal window today and then used Ctrl-< to
reduce its font size (expecting that the window size would stay the
same but more characters would be squeezed in), pterm failed the
assertion in term_request_resize_completed() that checks
term->win_resize_pending == WIN_RESIZE_AWAIT_REPLY.
This happened because in this situation request_resize_internal() was
called from within window.c rather than from within the terminal code
itself. So the terminal didn't know a resize is pending at all, and
was surprised to be told that one had finished.
request_resize_internal() already has a flag parameter to tell it
whether a given resize came from the terminal or not. On the main code
path, that flag is used to decide whether to notify the terminal. But
on the early exit path when the window is maximised, we weren't
checking the flag. An easy fix.
I noticed today that when GTK PuTTY puts up a message box such as a
host key dialog, which calls our create_message_box function with
selectable=true (so that the host key fingerprint can be conveniently
copy-pasted), a side effect is to take the X11 PRIMARY selection away
from whoever previously had it, even though the message box isn't
actually selecting anything right now.
I don't fully understand what's going on, but it apparently has
something to do with 'select on focus' behaviour, in which tabbing
into a selectable text control automatically selects its entire
contents. That makes sense for edit boxes, but not really for this
kind of thing.
Unfortunately, GTK apparently has no per-widget configuration to turn
that off. (The closest I found is not even per _application_: it lives
in GtkSettings, whose documentation says that it's general across all
GTK apps run by a user!)
So instead I work around it by moving the gtk_label_set_selectable
call to after the focus of the new window has already been sorted out.
Ugly, but it seems to work.
This allows you to set a flag in conio_setup() which causes the
returned ConsoleIO object to interpret all its output as UTF-8, by
translating it to UTF-16 and using WriteConsoleW to write it in
Unicode. Similarly, input is read using ReadConsoleW and decoded from
UTF-16 to UTF-8.
This flag is set to false in most places, to avoid making sudden
breaking changes. But when we're about to present a prompts_t to the
user, it's set from the new 'utf8' flag in that prompt, which in turn
is set by the userauth layer in any case where the prompts are going
to the server.
The idea is that this should be the start of a fix for the long-
standing character-set handling bug that strings transmitted during
SSH userauth (usernames, passwords, k-i prompts and responses) are all
supposed to be in UTF-8, but we've always encoded them in whatever our
input system happens to be using, and not done any tidying up on them.
We get occasional complaints about this from users whose passwords
contain characters that are encoded differently between UTF-8 and
their local encoding, but I've never got round to fixing it because
it's a large piece of engineering.
Indeed, this isn't nearly the end of it. The next step is to add UTF-8
support to all the _other_ ways of presenting a prompts_t, as best we
can.
Like the previous change to console handling, it seems very likely
that this will break someone's workflow. So there's a fallback
command-line option '-legacy-charset-handling' to revert to PuTTY's
previous behaviour.
Until now, the command-line PuTTY tools (PSCP, PSFTP and Plink) have
presented all the kinds of interactive prompt (password/passphrase,
host key, the assorted weak-crypto warnings, 'append to log file?') on
standard error, and read the responses from standard input.
This is unfortunate because if you're redirecting their standard
input (especially likely with Plink) then the prompt responses will
consume some of the intended session data. It would be better to
present the prompts _on the console_, even if that's not where stdin
or stderr point.
On Unix, we've been doing this for ages, by opening /dev/tty directly.
On Windows, we didn't, because I didn't know how. But I've recently
found out: you can open the magic file names CONIN$ and CONOUT$, which
will point at your actual console, if one is available.
So now, if it's possible, the command-line tools will do that. But if
the attempt to open CONIN$ and CONOUT$ fails, they'll fall back to the
old behaviour (in particular, if no console is available at all).
In order to make this happen consistently across all the prompt types,
I've introduced a new object called ConsoleIO, which holds whatever
file handles are necessary, knows whether to close them
afterwards (yes if they were obtained by opening CONFOO$, no if
they're the standard I/O handles), and presents a BinarySink API to
write to them and a custom API to read a line of text.
This seems likely to break _someone's_ workflow. So I've added an
option '-legacy-stdio-prompts' to restore the old behaviour.
This removes one case from several of the individual tools'
command-line parsers, and moves it into a central place where it will
automatically be supported by any tool containing console.c.
In order to make that not cause a link failure, there's now a
stubs/no-console.c which GUI clients of cmdline.c must include.
Horizontal scroll events aren't generated by the traditional mouse
wheel, but they can be generated by trackpad gestures, though this
isn't always configured on.
The cross-platform and Windows parts of this patch is due to
Christopher Plewright; I added the GTK support.
A KDE user observed that if you 'dock' a GTK PuTTY window to the side
of the screen (by dragging it to the RH edge, causing it to
half-maximise over the right-hand half of the display, similarly to
Windows), and then send a terminal resize sequence, then PuTTY fails
the assertion in term_resize_request_completed() which expects that an
unacknowledged resize request was currently in flight.
When drawing_area_setup() calls term_resize_request_completed() in
response to the inst->term_resize_notification_required flag, it
resets the inst->win_resize_pending flag, but doesn't reset
inst->term_resize_notification_required. As a result, the _next_ call
to drawing_area_setup will find that flag still set, and make a
duplicate call to term_resize_request_completed, after the terminal no
longer believes it's waiting for a response to a resize request. And
in this 'docked to the right-hand side of the display' state, KDE
apparently triggers two calls to drawing_area_setup() in quick
succession, making this bug manifest.
I could fix this by clearing inst->term_resize_notification_required.
But inspecting all the other call sites, it seems clear to me that my
original intention was for inst->term_resize_notification_required to
be a flag that's only meaningful if inst->win_resize_pending is set.
So I think a better fix is to conditionalise the check in
drawing_area_setup so that we don't even check
inst->term_resize_notification_required if !inst->win_resize_pending.
From https://invisible-island.net/xterm/ctlseqs/ctlseqs.html#h3-Any-event-tracking:
Any-event mode is the same as button-event mode, except that all motion
events are reported, even if no mouse button is down. It is enabled by
specifying 1003 to DECSET.
Normally the front ends only report mouse events when buttons are
pressed, so we introduce a MA_MOVE event with MBT_NOTHING set to
indicate such a mouse movement.
The setup code for CTRL_FILESELECT and CTRL_FONTSELECT is shared,
which means it's a mistake to test ctrl->fileselect.just_button in it
without first checking which control type we're actually dealing with.
UBsan picks this up by complaining that the just_button field contains
some byte value that's illegal for a boolean. I think it's also the
cause of an intermittent assertion failure reported recently, in which
dlg_fontsel_set finds that uc->entry is NULL when it never ought to
be. If the byte from the wrong union branch happened to be 0 by sheer
bad luck, that could give rise to exactly that failure.
Those versions of GTK (or rather, GDK) don't support the
GDK_WINDOW_STATE_TOP_TILED constants; they only support the
non-directional GDK_WINDOW_STATE_TILED. And GTK < 3.10.0 doesn't even
support that.
All those constants were under #ifdef already; I've just made the
ifdefs a bit more precise.
I still haven't got out of the habit of doing this the autotools way,
which doesn't work in cmake. cmake's HAVE_FOO variables are always
defined, and they take values 0 or 1, so testing them with 'defined'
will return the wrong value.
FreeBSD declares setpgrp() as taking two arguments, like Linux's
setpgid(). Detect that at configure time and adjust the call in
Pageant appropriately.
When linking statically against Kerberos, the setup code in
ssh_got_ssh_version() was trying to look up want_id==0 in the list of
one GSSAPI library, but unfortunately, the id field of that record was
not initialised at all, so if it happened to be nonzero nonsense, the
loop wouldn't find a library at all and would fail an assertion.
I mentioned recently (in commit 9e7d4c53d8) message that I'm no
longer fond of the variable name 'ret', because it's used in two quite
different contexts: it's the return value from a subroutine you just
called (e.g. 'int ret = read(fd, buf, len);' and then check for error
or EOF), or it's the value you're preparing to return from the
_containing_ routine (maybe by assigning it a default value and then
conditionally modifying it, or by starting at NULL and reallocating,
or setting it just before using the 'goto out' cleanup idiom). In the
past I've occasionally made mistakes by forgetting which meaning the
variable had, or accidentally conflating both uses.
If all else fails, I now prefer 'retd' (short for 'returned') in the
former situation, and 'toret' (obviously, the value 'to return') in
the latter case. But even better is to pick a name that actually says
something more specific about what the thing actually is.
One particular bad habit throughout this codebase is to have a set of
functions that deal with some object type (say 'Foo'), all *but one*
of which take a 'Foo *foo' parameter, but the foo_new() function
starts with 'Foo *ret = snew(Foo)'. If all the rest of them think the
canonical name for the ambient Foo is 'foo', so should foo_new()!
So here's a no-brainer start on cutting down on the uses of 'ret': I
looked for all the cases where it was being assigned the result of an
allocation, and renamed the variable to be a description of the thing
being allocated. In the case of a new() function belonging to a
family, I picked the same name as the rest of the functions in its own
family, for consistency. In other cases I picked something sensible.
One case where it _does_ make sense not to use your usual name for the
variable type is when you're cloning an existing object. In that case,
_neither_ of the Foo objects involved should be called 'foo', because
it's ambiguous! They should be named so you can see which is which. In
the two cases I found here, I've called them 'orig' and 'copy'.
As in the previous refactoring, many thanks to clang-rename for the
help.
In the course of recent refactorings I noticed a couple of cases where
we were doing old-fashioned preallocation of a char array with some
conservative maximum size, then writing into it via *p++ or similar
and hoping we got the calculation right.
Now we have strbuf and dupcat, so we shouldn't ever have to do that.
Fixed as many cases as I could find by searching for allocations of
the form 'snewn(foo, char)'.
Particularly worth a mention was the Windows GSSAPI setup code, which
was directly using the Win32 Registry API, and looks much more legible
using the windows/utils/registry.c wrappers. (But that was why I had
to enhance them in the previous commit so as to be able to open
registry keys read-only: without that, the open operation would
actually fail on this key, which is not user-writable.)
Also unix/askpass.c, which was doing a careful reallocation of its
buffer to avoid secrets being left behind in the vacated memory -
which is now just a matter of ensuring we called strbuf_new_nm().
This is like the seat-independent nonfatal(), but specifies a Seat,
which allows the GUI dialog box to have the right terminal window as
its parent (if there are multiple ones).
Changed over all the nonfatal() calls in the code base that could be
localised to a Seat, which means all the ones that come up if
something goes horribly wrong in host key storage. To make that
possible, I've added a 'seat' parameter to store_host_key(); it turns
out that all its call sites had one available already.
Somehow I missed that Coverity reported that complaint about a
(theoretically) uninitialised pointer twice, against the two
platforms' console.c files. Now fixed the same way in the other one.
The protocol selector widgets were misaligned in GTK as well as on
Windows, but for a completely different reason. (I guess both bugs
must have been introduced at the same time when I reworked the system
to tolerate more than two aligned widgets in commit b5ab90143a2df7f.)
To vertically align N widgets, you have to first figure out what range
of y-coordinates they jointly occupy, and then centre each one within
that range. We were trying to do both jobs in the same pass, which
meant trying to place the first widget before finding out where the
last one will be. To do this, we were separately computing the
y-range's start and width, the former by taking max of the
y-coordinates _seen so far_, and the latter by taking max of _all_ the
widgets' heights.
This has two problems. One is that if you later find out that the
y-coordinate of the top of the range needs to be lower than you'd
previously realised, it's too late to go back and reposition the
widgets you've already placed. But that's a theoretical issue that
would only come up with more complicated column layouts than we've
actually used. (And probably more complicated than would even be
_sensible_ to use.)
The other, more immediate, problem: the y-coordinates we were using
for already-placed widgets in the set were the ones _after_ we
adjusted each one for vertical centring. So if the first widget is
short and the second taller (say, heights 20 and 30 pixels), then the
first widget will be offset downwards by 5 pixels, but the second
widget will use that offset y-coordinate as the _top_ of the range to
fit itself into, and hence, will also be 5 pixels downward from where
it should have been.
I think only the second of those problems is immediately concerning,
but it's easier to fix both at once. I've removed the y-adjustment for
vertical centring from the main layout loop, and put it in a separate
pass run after the main layout finishes.
We already have the ability to start a subprocess and hook it up to a
Socket, for running local proxy commands. Now the same facility is
available as an auxiliary feature, so that a backend can start another
subcommand for a different purpose, and make a separate Socket to
communicate with it.
Just like the local proxy system, this facility captures the
subprocess's stderr, and passes it back to the caller via plug_log. To
make that not look silly, I had to add a system where the "proxy:"
prefix on the usual plug_log messages is reconfigurable, and when you
call platform_start_subprocess(), you get to pass the prefix you want
to use in this case.
I was just about to add another ordinary edit box control, and found I
couldn't remember what went in the context2 argument to conf_editbox.
When I looked it up, I realised it was one of those horrid integer
encodings of the form '1 means this, -1 means that, less than -1 means
some parametrised property where the parameter is obtained by negating
the encoded integer'.
Those are always awkward to remember, and worse to extend. So I've
replaced the integer context2 used with conf_editbox_handler with a
pointer to a small struct type in which the types and parameters have
sensible names and are documented.
(To avoid annoying const warnings everywhere, this also meant
extending the 'intorptr' union to have a const void * branch as well
as a 'void *'. Surprised I haven't needed that before. But if I
introduce any more of these parameter structures, it'll come in useful
again.)
I made a specific subdirectory 'stubs' to keep all the link-time stub
modules in, like notiming.c. And I put _one_ run-time stub in it,
namely nullplug.c. But the rest of the runtime stubs went into utils.
I think it's better to keep all the stubs together, so I've moved all
the null*.c in utils into stubs (with the exception of nullstrcmp.c,
which means the 'null' in a different sense). Also, fiddled with the
naming to be a bit more consistent, and stated in the new CMakeLists
the naming policy that distinguishes no-*.c from null-*.c.
I only recently found out that OpenSSH defined their own protocol IDs
for AES-GCM, defined to work the same as the standard ones except that
they fixed the semantics for how you select the linked cipher+MAC pair
during key exchange.
(RFC 5647 defines protocol ids for AES-GCM in both the cipher and MAC
namespaces, and requires that you MUST select both or neither - but
this contradicts the selection policy set out in the base SSH RFCs,
and there's no discussion of how you resolve a conflict between them!
OpenSSH's answer is to do it the same way ChaCha20-Poly1305 works,
because that will ensure the two suites don't fight.)
People do occasionally ask us for this linked cipher/MAC pair, and now
I know it's actually feasible, I've implemented it, including a pair
of vector implementations for x86 and Arm using their respective
architecture extensions for multiplying polynomials over GF(2).
Unlike ChaCha20-Poly1305, I've kept the cipher and MAC implementations
in separate objects, with an arm's-length link between them that the
MAC uses when it needs to encrypt single cipher blocks to use as the
inputs to the MAC algorithm. That enables the cipher and the MAC to be
independently selected from their hardware-accelerated versions, just
in case someone runs on a system that has polynomial multiplication
instructions but not AES acceleration, or vice versa.
There's a fourth implementation of the GCM MAC, which is a pure
software implementation of the same algorithm used in the vectorised
versions. It's too slow to use live, but I've kept it in the code for
future testing needs, and because it's a convenient place to dump my
design comments.
The vectorised implementations are fairly crude as far as optimisation
goes. I'm sure serious x86 _or_ Arm optimisation engineers would look
at them and laugh. But GCM is a fast MAC compared to HMAC-SHA-256
(indeed compared to HMAC-anything-at-all), so it should at least be
good enough to use. And we've got a working version with some tests
now, so if someone else wants to improve them, they can.
I booted my M1 Mac into macOS rather than Asahi for the first time in
a while, and discovered that an OS update seems to have added some
sysctl flags indicating the presence of the CPU extensions that I
previously knew of no way to check for! Added them checks to
arm_arch_queries.c, though I've also retained backwards compat with
the previous OS version which didn't have them at all.
OpenSSH, when called on to give the fingerprint of a certified public
key, will in many circumstances generate the hash of the public blob
of the _underlying_ key, rather than the hash of the full certificate.
I think the hash of the certificate is also potentially useful (if
nothing else, it provides a way to tell apart multiple certificates on
the same key). But I can also see that it's useful to be able to
recognise a key as the same one 'really' (since all certificates on
the same key share a private key, so they're unavoidably related).
So I've dealt with this by introducing an extra pair of fingerprint
types, giving the cross product of {MD5, SHA-256} x {base key only,
full certificate}. You can manually select which one you want to see
in some circumstances (notably PuTTYgen), and in others (such as
diagnostics) both fingerprints will be emitted side by side via the
new functions ssh2_double_fingerprint[_blob].
The default, following OpenSSH, is to just fingerprint the base key.
This patch fixes a few other whitespace and formatting issues which
were pointed out by the bulk-reindent or which I spotted in passing,
some involving manual editing to break lines more nicely.
I think the weirdest hunk in here is the one in windows/window.c
TranslateKey() where _half_ of an assignment statement inside an 'if'
was on the same line as the trailing paren of the if condition. No
idea at all how that one managed to happen!
If the function name (or expression) in a function call or declaration
is itself so long that even the first argument doesn't fit after it on
the same line, or if that would leave so little space that it would be
silly to try to wrap all the run-on lines into a tall thin column,
then I used to do this
ludicrously_long_function_name
(arg1, arg2, arg3);
and now prefer this
ludicrously_long_function_name(
arg1, arg2, arg3);
I picked up the habit from Python, where the latter idiom is required
by Python's syntactic significance of newlines (you can write the
former if you use a backslash-continuation, but pretty much everyone
seems to agree that that's much uglier). But I've found it works well
in C as well: it makes it more obvious that the previous line is
incomplete, it gives you a tiny bit more space to wrap the following
lines into (the old idiom indents the _third_ line one space beyond
the second), and I generally turn out to agree with the knock-on
indentation decisions made by at least Emacs if you do it in the
middle of a complex expression. Plus, of course, using the _same_
idiom between C and Python means less state-switching.
So, while I'm making annoying indentation changes in general, this
seems like a good time to dig out all the cases of the old idiom in
this code, and switch them over to the new.
My aim has always been to have those back-dented by 2 spaces (half an
indent level) compared to the statements around them, so that in
particular switch statements have distinct alignment for the
statement, the cases and the interior code without consuming two whole
indent levels.
This patch sweeps up all the violations of that principle found by my
bulk-reindentation exercise.
My bulk indentation check also turned up a lot of cases where a run-on
function call or if statement didn't have its later lines aligned
correctly relative to the open paren.
I think this is quite easy to do by getting things out of
sync (editing the first line of the function call and forgetting to
update the rest, perhaps even because you never _saw_ the rest during
a search-replace). But a few didn't quite fit into that pattern, in
particular an outright misleading case in unix/askpass.c where the
second line of a call was aligned neatly below the _wrong_ one of the
open parens on the opening line.
Restored as many alignments as I could easily find.
In several pieces of development recently I've run across the
occasional code block in the middle of a function which suddenly
switched to 2-space indent from this code base's usual 4. I decided I
was tired of it, so I ran the whole code base through a re-indenter,
which made a huge mess, and then manually sifted out the changes that
actually made sense from that pass.
Indeed, this caught quite a few large sections with 2-space indent
level, a couple with 8, and a handful of even weirder things like 3
spaces or 12. This commit fixes them all.
In the 'xterm 216+' function key mode, a function key pressed with a
combination of Shift, Ctrl and Alt has its usual sequence like
ESC[n~ (for some integer n) turned into ESC[n;m~ where m-1 is a 3-bit
bitmap of currently pressed modifier keys.
This mode now also applies to the keys on the small keypad above the
arrow keys (Ins, Home, PgUp etc). If xterm 216+ mode is selected,
those keys are modified in the same way as the function keys.
As with the function keys, this doesn't guarantee that PuTTY will
_receive_ any particular shifted key of this kind, and not repurpose
it. Just as Alt+F4 still closes the window (at least on Windows)
rather than sending a modified F4 sequence, Shift+Ins will still
perform a paste action rather than sending a modified Ins sequence,
Shift-PgUp will still scroll the scrollback, etc. But the keys not
already used by PuTTY for other purposes should now have their
modern-xterm behaviour in modern-xterm mode.
Thanks to H.Merijn Brand for developing and testing a version of this
patch.
Whenever we successfully send some data to standard output/error,
we're supposed to notify the backend that this has happened, and tell
it how much backlog still remains, by calling backend_unthrottle().
In Unix Plink, the call to backend_unthrottle() was happening on some
but not all calls to try_output(). In particular, it was happening
when we called try_output() as a result of stdout or stderr having
just been reported writable by poll(), but not when we called it from
plink_output() after the backend had just sent us some more data. Of
course that _normally_ works - if you were polling stdout for
writability at all then it's because a previous call had returned
EAGAIN, so that's when you _have_ backlog to dispose of. But it's also
possible, by an accident of timing, that before you get round to doing
that poll, the seat passes you further data and you call try_output()
anyway, and by chance, the blockage has cleared. In that situation,
you end up having cleared your backlog but forgotten to tell the
backend about it - which might mean the backend never unfreezes the
channel or (in 'simple' mode) the entire SSH socket.
A user reported (and I reproduced) that when Plink is compiled on
MacOS, running an interactive session through it and doing
output-intensive activity like scrolling around in htop(1) can quite
easily get it into what turned out to be that stuck state. (I don't
know why MacOS and not any other platform, but since it's a race
condition, that seems like a plausible enough cause of a difference in
timing.)
Also, we were inconsistently computing the backlog size: sometimes it
was the total size of the stdout and stderr bufchains, and sometimes
it was just the size of the one we'd made an effort to empty.
Now the backlog size is consistently stdout+stderr (the same as it is
in Windows Plink), and the call to backend_unthrottle() happens
_inside_ try_output(), so that I don't have to remember it at every
call site.
The text of the host key warnings was replicated in three places: the
Windows rc file, the GTK dialog setup function, and the console.c
shared between both platforms' CLI tools. Now it lives in just one
place, namely ssh/common.c where the rest of the centralised host-key
checking is done, so it'll be easier to adjust the wording in future.
This comes with some extra automation. Paragraph wrapping is no longer
done by hand in any version of these prompts. (Previously we let GTK
do the wrapping on GTK, but on Windows the resource file contained a
bunch of pre-wrapped LTEXT lines, and console.c had pre-wrapped
terminal messages.) And the dialog heights in Windows are determined
automatically based on the amount of stuff in the window.
The main idea of all this is that it'll be easier to set up more
elaborate kinds of host key prompt that deal with certificates (if,
e.g., a server sends us a certified host key which we don't trust the
CA for). But there are side benefits of this refactoring too: each
tool now reliably inserts its own appname in the prompts, and also, on
Windows the entire prompt text is copy-pastable.
Details of implementation: there's a new type SeatDialogText which
holds a set of (type, string) pairs describing the contents of a
prompt. Type codes distinguish ordinary text paragraphs, paragraphs to
be displayed prominently (like key fingerprints), the extra-bold scary
title at the top of the 'host key changed' version of the dialog, and
the various information that lives in the subsidiary 'more info' box.
ssh/common.c constructs this, and passes it to the Seat to present the
actual prompt.
In order to deal with the different UI for answering the prompt, I've
added an extra Seat method 'prompt_descriptions' which returns some
snippets of text to interpolate into the messages. ssh/common.c calls
that while it's still constructing the text, and incorporates the
resulting snippets into the SeatDialogText.
For the moment, this refactoring only affects the host key prompts.
The warnings about outmoded crypto are still done the old-fashioned
way; they probably ought to be similarly refactored to use this new
SeatDialogText system, but it's not immediately critical for the
purpose I have right now.
Partly, this just seems more sensible, since it may well vary per
platform beyond the ability of intorptr to specify. But more
immediately it means the definition of the HELPCTX macro doesn't have
to use the P() function from dialog.h, which isn't defined in any
circumstances outside the config subsystem. And I'm about to want to
put a help context well outside that subsystem.
This replaces the previous placeholder scheme of having a list of
hostname wildcards with implicit logical-OR semantics (if any wildcard
matched then the certificate would be trusted to sign for that host).
That scheme didn't allow for exceptions within a domain ('everything
in example.com except extra-high-security-machine.example.com'), and
also had no way to specify port numbers.
In the new system, you can still write a hostname wildcard by itself
in the simple case, but now those are just atomic subexpressions in a
boolean-logic domain-specific language I've made up. So if you want
multiple wildcards, you can separate them with || in a single longer
expression, and also you can use && and ! to impose exceptions on top
of that.
Full details of the expression language are in the comment at the top
of utils/cert-expr.c. It'll need documenting properly before release,
of course.
For the sake of backwards compatibility for early adopters who've
already set up configuration in the old system, I've put in some code
that will read the old MatchHosts configuration and automatically
translate it into the equivalent boolean expression (by simply
stringing together the list of wildcards with || between them).
This manipulates the selection inside an edit box, to select a
specific range of characters in the contained text. The idea is that
you can use it as a means of error highlighting, if the user has
entered something invalid in that edit box and you want to draw their
attention to the specific location of the part you're unhappy with.
The only *use* of it was removed in commit 6a743399b0, where
instead of blocking the GTK signal that caused a string to be
overwritten, I switched to making a temporary copy of the string. But
I didn't notice that the declaration and assignments could be cleaned
up too.
Large chunks of the GTK setup code had a 2-space indent for some
reason, in place of the usual 4-space in this code base. I've been
meaning to sort it out for ages, because it makes it hard to have a
single set of editor settings suitable for the whole code base.
Instead of maintaining a single sparse table mapping Unicode to the
currently selected code page, we now maintain a collection of such
tables mapping Unicode to any code page we've so far found a need to
work with, and we add code pages to that list as necessary, and never
throw them away (since there are a limited number of them).
This means that the wc_to_mb family of functions are effectively
stateless: they no longer depend on a 'struct unicode_data'
corresponding to the current terminal settings. So I've removed that
parameter from all of them.
This fills in the missing piece of yesterday's commit a216d86106:
now wc_to_mb too should be able to handle internally-implemented
character sets, by hastily making their reverse mapping table if it
doesn't already have it.
(That was only a _latent_ bug, because the only use of wc_to_mb in the
cross-platform or Windows code _did_ want to convert to the currently
selected code page, so the old strategy worked in that case. But there
was no protection against an unworkable use of it being added later.)
Fixes a cosmetic issue where the new ConPTY error added in 4ae8b742ab
had an ugly "Unable to open connection to".
(Arguably this ought to test a backend property rather than
cmdline_tooltype.)
Without this, the build of e.g. psusan would fail on systems without
that header (such as Termux on Android).
This is similar to how things were pre-cmake, but not identical. We used
to treat lack of updwtmpx() as a reason to OMIT_UTMP (as of f0dfa73982),
but usage of that function got conditionalised in c19e7215dd, so I
haven't restored that exclusion.
When the user provides a password on the PuTTY command line, via -pw
or -pwfile, the flag 'tried_once' inside cmdline_get_passwd_input() is
intended to arrange that we only try sending that password once, and
after we've sent it, we don't try again.
But this plays badly with the 'Restart Session' operation. If the
connection is lost and then restarted at user request, we _do_ want to
send that password again!
So this commit moves that static variable out into a small state
structure held by the client of cmdline_get_passwd_input. Each client
can decide how to manage that state itself.
Clients that support 'Restart Session' - i.e. just GUI PuTTY itself -
will initialise the state at the same time as instantiating the
backend, so that every time the session is restarted, we return
to (correctly) believing that we _haven't_ yet tried the password
provided on the command line.
But clients that don't support 'Restart Session' - i.e. Plink and file
transfer tools - can do the same thing that cmdline.c was doing
before: just keep the state in a static variable.
This also means that the GUI login tools will now retain the
command-line password in memory, whereas previously they'd have wiped
it out once it was used. But the other tools will still wipe and free
the password, because I've also added a 'bool restartable' flag to
cmdline_get_passwd_input to let it know when it _is_ allowed to do
that.
In the GUI tools, I don't see any way to get round that, because if
the session is restarted you _have_ to still have the password to use
again. (And you can't infer that that will never happen from the
CONF_close_on_exit setting, because that too could be changed in
mid-session.) On the other hand, I think it's not all that worrying,
because the use of either -pw or -pwfile means that a persistent copy
of your password is *already* stored somewhere, so another one isn't
too big a stretch.
(Due to the change of -pw policy in 0.77, the effect of this bug was
that an attempt to reconnect in a session set up this way would lead
to "Configured password was not accepted". In 0.76, the failure mode
was different: PuTTY would interactively prompt for the password,
having wiped it out of memory after it was used the first time round.)
Commit 5390aef3fc broke it, because GTK1 has neither
gtk_label_set_selectable nor gtk_widget_set_can_focus. Happily, those
are both more or less optional (only a minor UI awkwardness arises
from not having them), so I'll just condition them out.
If the user holds down Alt-> so that the key repeats, then a second
call to change_font_size can occur while the window resize from the
previous one has yet to complete. This leads to the new pixel size of
the window from resize #1 being interpreted in the light of the font
size from reesize #2, so that the two get out of step and the
_character_ size of the terminal changes as a result.
The simplest fix is to disallow starting a second font-size-based
window resize while the first is still in flight - which, now that the
'win_resize_pending' flag lives in window.c and not terminal.c, is
easy to achieve.
In the changes around commit 420fe75552, I made the terminal
suspend output processing while it waited for a term_size() callback
in response to a resize request. Because on X11 there are unusual
circumstances in which you never receive that callback, I also added a
last-ditch 5-second timeout, so that eventually we'll resume terminal
output processing regardless.
But the timeout lives in terminal.c, in the cross-platform code. This
is pointless on Windows (where resize processing is synchronous, so we
always finish it before the timer code next gets called anyway), but I
decided it was easier to keep the whole mechanism in terminal.c in the
absence of a good reason not to.
Now I've found that reason. We _also_ generate window resizes locally
to the GTK front end, in response to the key combinations that change
the font size, and _those_ still have an asynchrony problem.
So, to begin with, I'm refactoring the request_resize system so that
now there's an explicit callback from the frontend to the terminal to
say 'Your resize request has now been processed, whether or not you've
received a term_size() call'. On Windows, this simplifies matters
greatly because we always know exactly when to call that, and don't
have to keep a 'have we called term_size() already?' flag. On GTK, the
timing complexity previously in terminal.c has moved into window.c.
No functional change (I hope). The payoff will be in the next commit.
This is for cases where they're presenting information to the user
that wouldn't wrap sensibly anyway (such as an SSH key fingerprint
which is mostly all one word), and in which newlines might be
significant.
On GTK, the implementing widget is still a GtkLabel, but without the
wrap flag set, and wrapped in a GtkScrolledWindow in case the text is
too wide to fit.
On Windows, I've switched to using an edit box instead of a static
text control, making it readonly, and borderless via my existing
MakeDlgItemBorderless helper function. This doesn't get you an actual
scrollbar, but it does mean you can scroll left and right by dragging
with the mouse.
This doesn't apply to every GtkLabel I instantiate: only the ones
constructed as part of implementing the cross-platform CTRL_TEXT.
Those labels contain information that the dialog box is deliberately
communicating to the user, so it seems a sensible idea to make sure
they can be copy-pasted.
By default, this also seems to cause them to become able to take the
input focus, so I've reverted that. You can select them with the
mouse, but I think having them appear in the tab order is an
awkwardness too far, since they're not active in any other way.
Previously, in the code that instantiated the dialog.h portable
control spec, an edit control with width=100 would be implemented as a
small Columns object containing the label and the edit control atop
each other. Now, instead, the two controls are placed separately into
the containing Columns.
Combined with the changes just made to the align_next_to system, this
means that you can put buttons to the right of such an edit box and
have them line up with the actual edit box, instead of trying to line
up with the combination of the box and its label.
(The Windows alignment system already identified the specific edit box
control as the relevant one, so this was already working there.)
Various alignments I want to do in the host CA box have shown up
deficiencies in this system, so I've reworked it a bit.
Firstly, you can now specify more than two controls to be tied
together with an align_next_to (e.g. multiple checkboxes alongside
something else).
Secondly, as well as forcing the controls to be the same height as
each other, the layout algorithm will also move the later controls
further _downward_, so that their top y positions also line up. Until
now that hasn't been necessary, because they lined up already.
In the GTK implementation of this via the Columns class, I've renamed
'columns_force_same_height' to 'columns_align_next_to', and similarly
for some of the internal fields, since the latter change makes the
previous names a misnomer.
In the Windows implementation, I found it most convenient to set this
up by following a linked list of align_next_to fields backwards. But
it won't always be convenient to initialise them that way, so I've
also written a crude normaliser that will rewrite those links into a
canonical form. But I only call that on Windows; it's unnecessary in
GTK, where the Columns class provides plenty of per-widget extra
storage so I just keep each alignment class as a circular list.
As distinct from the type of signature generated by the SSH server
itself from the host key, this lets you exclude (and by default does
exclude) the old "ssh-rsa" SHA-1 signature type from the signature of
the CA on the certificate.
This will allow the central host_ca_new function to pre-populate the
structure with default values for the fields, so that once I add more
options to CA configuration they can take their default values when
loading a saved record from a previous PuTTY version.
In the course of polishing up this dialog box, I'm going to want it to
actually do cryptographic things (such as checking validity of a
public key blob and printing its fingerprint), which means it will
need to link against SSH utility functions.
So I've moved the dialog-box setup and handling code out of config.c
into a new file in the ssh subdirectory and in the ssh library, where
those facilities will be conveniently available.
This also means that dialog-box setup code _won't_ be linked into
PuTTYtel or pterm (on either platform), so I've added a stub source
file to provide its entry-point function in those tools. Also,
provided a const bool to indicate whether that dialog is available,
which we use to decide whether to recognise that command-line option.
Instead of an edit box together with a Browse button that pops up a
sub-dialog, this is _just_ the browse button, only now it has a
user-defined title. I'm about to want to use this for loading CA
public keys from files.
This causes PuTTY to bring up just the host CA configuration dialog
box, and shut down once that box is dismissed.
I can imagine it potentially being useful to users, but in the first
instance, I expect it to be useful to _me_, because it will greatly
streamline testing changes to the UI of that dialog!
This gets rid of that awkward STANDARD_PREFIX system in which every
branch of the old 'union control' had to repeat all the generic
fields, and then call sites had to make an arbitrary decision about
which branch to access them through.
That was the best we could do before accepting C99 features in this
code base. But now we have anonymous unions, so we don't need to put
up with that nonsense any more!
'dlgcontrol' is now a struct rather than a union, and the generic
fields common to all control types are ordinary members of the struct,
so you don't have to refer to them as ctrl->generic.foo at all, just
ctrl->foo, which saves verbiage at the point of use.
The extra per-control fields are still held in structures named after
the control type, so you'll still say ctrl->listbox.height or
whatever. But now those structures are themselves members of an
anonymous union field following the generic fields, so those
sub-structures don't have to reiterate all the standard stuff too.
While I'm here, I've promoted 'context2' from an editbox-specific
field to a generic one (it just seems silly _not_ to allow any control
to have two context fields if it needs it). Also, I had to rename the
boolean field 'tabdelay' to avoid it clashing with the subsidiary
structure field 'tabdelay', now that the former isn't generic.tabdelay
any more.
I'm about to change my mind about whether its top-level nature is
struct or union, and rather than change the key word 'union' to
'struct' at every point of use, it's nicer to just get rid of the
keyword completely. So it has a shiny new name.
I just tried to trace through the Windows version's control flow in
response to a confusing bug report, and found that the control flow
itself was so confusing I couldn't make sense of it. Why are we
choosing between getaddrinfo and gethostbyname via #ifndef NO_IPV6,
then re-converging control flow and diverging a second time to report
the error?
So I rewrote the whole thing to have completely separate sections of
code dealing with the three resolution strategies, each with its own
dedicated error reporting system. And then I checked the Unix version
and found it was about as confusing, so I rewrote that too in the same
style. Now the two are mostly the same, except for details: Unix has
an override at the top for a Unix socket pathname, Windows has to cope
with getaddrinfo maybe not being found at run time (so the other cases
aren't in the #else clause), and Windows uses the same error reporting
for both lookup functions whereas Unix has to use the appropriate
gai_strerror or hstrerror.
Now we offer the OpenSSH certificate key types in our KEXINIT host key
algorithm list, so that if the server has a certificate, they can send
it to us.
There's a new storage.h abstraction for representing a list of trusted
host CAs, and which ones are trusted to certify hosts for what
domains. This is stored outside the normal saved session data, because
the whole point of host certificates is to avoid per-host faffing.
Configuring this set of trusted CAs is done via a new GUI dialog box,
separate from the main PuTTY config box (because it modifies a single
set of settings across all saved sessions), which you can launch by
clicking a button in the 'Host keys' pane. The GUI is pretty crude for
the moment, and very much at a 'just about usable' stage right now. It
will want some polishing.
If we have no CA configured that matches the hostname, we don't offer
to receive certified host keys in the first place. So for existing
users who haven't set any of this up yet, nothing will immediately
change.
Currently, if we do offer to receive certified host keys and the
server presents one signed by a CA we don't trust, PuTTY will bomb out
unconditionally with an error, instead of offering a confirmation box.
That's an unfinished part which I plan to fix before this goes into a
release.
This makes room to add more entries without the Proxy panel
overflowing. It also means we can put in a bit more explanation in
some of the more cryptic one-word names!
I got a pterm into a stuck state this morning by an accidental mouse
action. I'd intended to press Ctrl + right-click to pop up the context
menu, but I accidentally pressed down the left button first, starting
a selection drag, and then while the left button was still held down,
pressed down the right button as well, triggering the menu.
The effect was that the context menu appeared while term->selstate was
set to DRAGGING, in which state terminal output is suppressed, and
which is only unset by a mouse-button release event. But then that
release event went to the popup menu, and the terminal window never
got it. So the terminal stayed stuck forever - or rather, until I
guessed the cause and did another selection drag to reset it.
This happened to me on GTK, but once I knew how I'd done it, I found I
could reproduce the same misbehaviour on Windows by the same method.
Added a simplistic fix, on both platforms, that cancels a selection
drag if the popup menu is summoned part way through it.
Checking various implementations of these functions against each
other, I noticed by eyeball review that some of the special cases in
mb_to_wc() never check the buffer limit at all. Yikes!
Fortunately, I think there's no vulnerability, because these special
cases are ones that write out at most one wide char per multibyte
char, and at all the call sites (including dup_mb_to_wc) we allocate
that much even for the first attempt. The only exception to that is
the call in key_event() in unix/window.c, which uses a fixed-size
output buffer, but its input will always be the data generated by an X
keystroke event. So that one can only overrun the buffer if an X key
event manages to translate into more than 32 wide characters of text -
and even if that does come up in some exotic edge case, it will at
least not be happening under _enemy_ control.
When the window can't be resized for any reason, there will be extra
space inside the drawing area that's not part of our standard
width*font_width+2*window_border. We should include that in the
backing surface and make sure we erase it to the background colour,
otherwise it can end up containing unwanted visual junk.
An example is the same case described in the previous commit: maximise
the window and then start playing about with the font size. If you do
this while running a full-screen application that displays text in the
bottom line, it's easy to see that part of the previous display is
left over and not cleared when the new font size leaves more space at
the bottom than the old one.
If you maximise the terminal window and then press Ctrl-> or Ctrl-< to
change the font size, then the maximised window can't change size, so
what _should_ happen instead is that the terminal adjusts the number
of character cells to whatever the new font size will now permit in
the same size of window as before.
But in fact, the terminal size wasn't changing at all, because the
call to gtkwin_request_resize (called from change_font_size) detected
the maximised window and went straight to gtkwin_deny_term_resize,
which immediately called term_size() to tell the terminal it still had
the same size as before.
This commit switches gtkwin_deny_term_resize so that instead it calls
drawing_area_setup_simple(), which re-runs drawing_area_setup with the
same size the drawing area already had. This should work out the same
in the case where we're _not_ changing the font size, but now also
does the right thing when we are.
Unix Pageant is in a tricky position as a hybrid CLI/GUI application.
It has uses even in a purely CLI environment, but it won't build
without libgtk-3-dev and friends.
The solution, of course - enabled by the migration to cmake - is to
allow it to build without GTK, leaving out just the GTK askpass
functionality. That way you can still use it in any of its CLI modes,
either as a non-graphical SSH agent or as a client for an agent
elsewhere.
(You can still even use it in X lifetime mode, because its connection
to the X server is done using PuTTY's built-in X authentication and
connection setup code. It's only putting up the password prompt window
that you lose in this configuration - so you're still fine as long as
you don't try to add any encrypted keys.)
Correcting a source file name in the docs just now reminded me that
I've seen a lot of outdated source file names elsewhere in the code,
due to all the reorganisation since we moved to cmake. Here's a giant
pass of trying to make them all accurate again.
All the seat functions that request an interactive prompt of some kind
to the user - both the main seat_get_userpass_input and the various
confirmation dialogs for things like host keys - were using a simple
int return value, with the general semantics of 0 = "fail", 1 =
"proceed" (and in the case of seat_get_userpass_input, answers to the
prompts were provided), and -1 = "request in progress, wait for a
callback".
In this commit I change all those functions' return types to a new
struct called SeatPromptResult, whose primary field is an enum
replacing those simple integer values.
The main purpose is that the enum has not three but _four_ values: the
"fail" result has been split into 'user abort' and 'software abort'.
The distinction is that a user abort occurs as a result of an
interactive UI action, such as the user clicking 'cancel' in a dialog
box or hitting ^D or ^C at a terminal password prompt - and therefore,
there's no need to display an error message telling the user that the
interactive operation has failed, because the user already knows,
because they _did_ it. 'Software abort' is from any other cause, where
PuTTY is the first to know there was a problem, and has to tell the
user.
We already had this 'user abort' vs 'software abort' distinction in
other parts of the code - the SSH backend has separate termination
functions which protocol layers can call. But we assumed that any
failure from an interactive prompt request fell into the 'user abort'
category, which is not true. A couple of examples: if you configure a
host key fingerprint in your saved session via the SSH > Host keys
pane, and the server presents a host key that doesn't match it, then
verify_ssh_host_key would report that the user had aborted the
connection, and feel no need to tell the user what had gone wrong!
Similarly, if a password provided on the command line was not
accepted, then (after I fixed the semantics of that in the previous
commit) the same wrong handling would occur.
So now, those Seat prompt functions too can communicate whether the
user or the software originated a connection abort. And in the latter
case, we also provide an error message to present to the user. Result:
in those two example cases (and others), error messages should no
longer go missing.
Implementation note: to avoid the hassle of having the error message
in a SeatPromptResult being a dynamically allocated string (and hence,
every recipient of one must always check whether it's non-NULL and
free it on every exit path, plus being careful about copying the
struct around), I've instead arranged that the structure contains a
function pointer and a couple of parameters, so that the string form
of the message can be constructed on demand. That way, the only users
who need to free it are the ones who actually _asked_ for it in the
first place, which is a much smaller set.
(This is one of the rare occasions that I regret not having C++'s
extra features available in this code base - a unique_ptr or
shared_ptr to a string would have been just the thing here, and the
compiler would have done all the hard work for me of remembering where
to insert the frees!)
This fills in the remaining gap in the interactive prompt rework of
the proxy system in general. If you used the Telnet proxy with a
command containing %user or %pass, and hadn't filled in those
variables in the PuTTY config, then proxy/telnet.c would prompt you at
run time to enter the proxy auth details. But the local proxy command,
which uses the same format_telnet_command function, would not do that.
Now it does!
I've implemented this by moving the formatting of the proxy command
into a new module proxy/local.c, shared between both the Unix and
Windows local-proxy implementations. That module implements a
DeferredSocketOpener, which constructs the proxy command (prompting
first if necessary), and once it's constructed, hands it to a
per-platform function platform_setup_local_proxy().
So each platform-specific proxy function, instead of starting a
subprocess there and then and passing its details to make_fd_socket or
make_handle_socket, now returns a _deferred_ version of one of those
sockets, with the DeferredSocketOpener being the thing in
proxy/local.c. When that calls back to platform_setup_local_proxy(),
we actually start the subprocess and pass the resulting fds/handles to
the deferred socket to un-defer it.
A side effect of the rewrite is that when proxy commands are logged in
the Event Log, they now get the same amenities as in the Telnet proxy
type: the proxy password is sanitised out, and any difficult
characters are escaped.
Previously, a setup function returning one of these socket types (such
as platform_new_connection) had to do all its setup synchronously,
because if it was going to call make_fd_socket or make_handle_socket,
it had to have the actual fds or HANDLEs ready-made. If some kind of
asynchronous operation were needed before those fds become available,
there would be no way the function could achieve it, except by
becoming a whole extra permanent Socket wrapper layer.
Now there is, because you can make an FdSocket when you don't yet have
the fds, or a HandleSocket without the HANDLEs. Instead, you provide
an instance of the new trait 'DeferredSocketOpener', which is
responsible for setting in motion whatever asynchronous setup
procedure it needs, and when that finishes, calling back to
setup_fd_socket / setup_handle_socket to provide the missing pieces.
In the meantime, the FdSocket or HandleSocket will sit there inertly,
buffering any data the client might eagerly hand it via sk_write(),
and waiting for its setup to finish. When it does finish, buffered
data will be released.
In FdSocket, this is easy enough, because we were doing our own
buffering anyway - we called the uxsel system to find out when the fds
were readable/writable, and then wrote to them from our own bufchain.
So more or less all I had to do was make the try_send function do
nothing if the setup phase wasn't finished yet.
In HandleSocket, on the other hand, we're passing all our data to the
underlying handle-io.c system, and making _that_ deferrable in the
same way would be much more painful, because that's the place where
the scary threads live. So instead I've arranged it by replacing the
whole vtable, so that a deferred HandleSocket and a normal
HandleSocket are effectively separate trait implementations that can
share their state structure. And in fact that state struct itself now
contains a big anonymous union, containing one branch to go with each
vtable.
Nothing yet uses this system, but the next commit will do so.
This will mean that platform-specific proxy types will also be able to
set themselves up as child Interactors and prompt the user
interactively for passwords and the like.
NFC: nothing uses the new parameter yet.
Now, when you resize the Event Log window, the list box grows in both
directions. Previously, as a side effect of the Columns-based layout,
it grew only horizontally.
I've arranged this by adding an extra wrinkle to the Columns layout
system, which allows you to tag _exactly one_ widget in the whole
container as the 'vexpand' widget. When the Columns is size-allocated
taller than its minimum height, the vexpand widget is given all the
extra space.
This technique ports naturally across all versions of GTK (since the
hard part is done in my own code). But it's limited: you can't set
more than one widget to be vexpand (which saves having to figure out
whether they're side by side and can expand in parallel, or vertically
separated and each have to get half the available extra space, etc).
And in complex layouts where the widget you really want to expand is
in a sub-Columns, there's no system for recursively searching down to
find it.
In other words, this is a one-shot bodge for the Event Log, and it
will want more work if we ever plan to extend it to list boxes in the
main config dialog.
While re-testing on Wayland after all this churn of the window
resizing code, I discovered that the window constantly came out a few
pixels too small, losing a character cell in width and height. This
stopped happening once I experimentally stopped setting geometry
hints.
Source-diving in GTK, it turns out that this is because the GDK
Wayland backend is applying the geometry hints to the size of the
window including 'margins', which are a very large extra space around
a window beyond even the visible 'non-client-area' furniture like the
title bar. And I have no idea how you find out the size of those
margins, so I can't allow for them in the geometry hints.
I also noticed that gtk_window_set_geometry_hints is removed in GTK 4,
which suggests that GTK upstream are probably not interested in
fiddling with them until they work more usefully (even if they would
agree with me that this is a bug in the first place, which I have no
idea). A simpler workaround is to avoid setting geometry hints at all
on any GDK backend other than X11.
So, that's what this commit does. On Wayland (or other backends), the
window can now be resized a pixel at a time, and if its size doesn't
work out to a whole number of character cells, then you just get some
dead space at the edges. Not especially nice, but better than the
alternatives I can see.
One other job the geometry hints were doing was to forbid resizing if
the backend sets the BACKEND_RESIZE_FORBIDDEN flag (which SUPDUP
does). That's now done at window creation time, via
gtk_window_set_resizable.
The window size set in the geometry hints when the backend has the
BACKEND_RESIZE_FORBIDDEN flag was computed in a simplistic way that
forgot to take account of window furniture like scrollbars and menu
bars. Now it's computed based on the rest of the geometry hints, which
are more accurate.
If the Seat that the pty backend is talking to starts to back up, then
we ought to temporarily stop reading from the pty device, to pass that
back-pressure on to whatever's running in the terminal.
Previously, this didn't matter because a Seat running a GUI terminal
never backed up anyway. But now it does, so we should support it all
the way through the system.
Normally, the GTK code runs toplevel callbacks from a GTK 'idle
function'. But those mean what they say: they are considered
low-priority, to be run _only_ when the system is idle - so they can
fail to run at all in conditions of a steady stream of higher-priority
things, e.g. something is throwing data at the application so fast
that every main-loop iteration finds a readable fd.
And that's not good, because _we_ don't think our callbacks are
low-priority: they do a lot of really important work like redrawing
the window. So if they never get round to happening, PuTTY or pterm
can appear to lock up.
Simple solution to that one: whenever we process a select notification
on any fd, we _also_ call run_toplevel_callbacks(). Then our callbacks
are bound to happen reasonably regularly.
The return value of term_data() is used as the return value from the
GUI-terminal versions of the Seat output method, which means backends
will take it to be the amount of standard-output data currently
buffered, and exert back-pressure on the remote peer if it gets too
big (e.g. by ceasing to extend the window in that particular SSH-2
channel).
Historically, as a comment in term_data() explained, we always just
returned 0 from that function, on the basis that we were processing
all the terminal data through our terminal emulation code immediately,
and never retained any of it in the buffer at all. If the terminal
emulation code were to start running slowly, then it would slow down
the _whole_ PuTTY system, due to single-threadedness, and
back-pressure of a sort would be exerted on the remote by it simply
failing to get round to reading from the network socket. But by the
time we got back to the top level of term_data(), we'd have finished
reading all the data we had, so it was still appropriate to return 0.
That comment is still correct if you're thinking about the limiting
factor on terminal data processing being the CPU usage in term_out().
But now that's no longer the whole story, because sometimes we leave
data in term->inbuf without having processed it: during drag-selects
in the terminal window, and (just introduced) while waiting for the
response to a pending window resize request. For both those reasons,
we _don't_ always have a buffer size of zero when we return from
term_data().
So now that hole in our buffer size management is filled in:
term_data() returns the true size of the remaining unprocessed
terminal output, so that back-pressure will be exerted if the terminal
is currently not consuming it. And when processing resumes and we
start to clear our backlog, we call backend_unthrottle to let the
backend know it can relax the back-pressure if necessary.
When the terminal asks its TermWin for a resize, the resize operation
happens asynchronously (or can do), and sooner or later, the terminal
will see a term_size() telling it the resize has actually taken
effect.
If the resize _doesn't_ take effect for any reason - e.g. because the
window is maximised, or because the X11 window manager is a tiling one
which will refuse requests to change the window size anyway - then the
terminal never got any explicit notification of refusal to resize. Now
it should, in as many cases as I can arrange.
One obvious case of this is the early exit I recently added to
gtkwin_request_resize() when the window is known to be in a maximised
or tiled state preventing a resize: in that situation, when our own
code knows we're not even attempting the resize, we also queue a
toplevel callback to tell the terminal so.
The more interesting case is when the request is refused for a reason
GTK _didn't_ know in advance, e.g. because the user is running an X11
tiling window manager such as i3, which generally refuses windows'
resize requests. In X11, if a window manager refuses an attempt to
change the window's size via ConfigureWindow, ICCCM says it should
respond by sending a synthetic ConfigureNotify event restating the
same size. Such no-op configure events do reach the "configure_event"
handler in a GTK program, but they weren't previously getting as far
as term_size(), because the call to term_size() was triggered from the
GTK "size_allocate" event on the GtkDrawingArea inside the window (via
drawing_area_setup()), so GTK would detect that nothing had changed.
Now we queue a last-ditch toplevel callback which ensures that if the
configure event doesn't also cause a size_allocate and a call to
drawing_area_setup(), then we cause one of our own once the dust has
settled. And drawing_area_setup(), in turn, now unconditionally calls
term_size() even if the size is the same as it was last time, instead
of taking an early exit. (It still does take an early exit to avoid
unnecessary faffing with Cairo surfaces etc, but _after_ term_size()).
This won't be 100% reliable, because it's the window manager's
responsibility to send those synthetic ConfigureNotify events, and a
window manager is a fallible process which could get into a stuck
state. But it covers all the cases I know of that _can_ be sensibly
covered - so now, when terminal.c asks the front end to resize the
window, it ought to find out in a timely manner whether or not that
has happened, in _almost_ all cases.
This is another thing that seems harmless on X11 but causes window
redraws to semipermanently stop happening on Wayland: if we try to
gtk_window_resize() a window that is maximised at the time, then
something mysterious goes wrong and we stop ever getting "draw" events.
The event should return a 'gboolean', indicating whether the event
needs propagating any further. We were returning void, which meant
that the default handling might be accidentally suppressed.
On Wayland, this had the particularly nasty effect that window redraws
would stop completely if you maximised the terminal window.
(By trial and error I found that this stopped happening if I removed
GDK_HINT_RESIZE_INC from the geometry hints, from which I guess that
the default window-state-event handler is doing something important
relating to that hint, or would have been if we hadn't accidentally
suppressed it. But the bug is clearly here.)