1
0
mirror of https://git.tartarus.org/simon/putty.git synced 2025-01-08 08:58:00 +00:00
putty-source/sshsh512.c
Simon Tatham 31cd5ee19b Fix buffer overflow in NEON SHA-384 output.
An obvious goof - in SHA-384, you don't want to write out the last of
the four state vectors! Fortunately I spotted it only a couple of
hours after introducing it.
2020-12-24 17:39:54 +00:00

837 lines
27 KiB
C

/*
* SHA-512 algorithm as described at
*
* http://csrc.nist.gov/cryptval/shs.html
*
* Modifications made for SHA-384 also
*/
#include <assert.h>
#include "ssh.h"
/*
* Start by deciding whether we can support hardware SHA at all.
*/
#define HW_SHA512_NONE 0
#define HW_SHA512_NEON 1
#ifdef _FORCE_SHA512_NEON
# define HW_SHA512 HW_SHA512_NEON
#elif defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
/* Arm can potentially support both endiannesses, but this code
* hasn't been tested on anything but little. If anyone wants to
* run big-endian, they'll need to fix it first. */
#elif defined __ARM_FEATURE_SHA512
/* If the Arm SHA-512 extension is available already, we can
* support NEON SHA without having to enable anything by hand */
# define HW_SHA512 HW_SHA512_NEON
#elif defined(__clang__)
# if __has_attribute(target) && __has_include(<arm_neon.h>) && \
(defined(__aarch64__))
/* clang can enable the crypto extension in AArch64 using
* __attribute__((target)) */
# define HW_SHA512 HW_SHA512_NEON
# define USE_CLANG_ATTR_TARGET_AARCH64
# endif
#endif
#if defined _FORCE_SOFTWARE_SHA || !defined HW_SHA512
# undef HW_SHA512
# define HW_SHA512 HW_SHA512_NONE
#endif
/*
* The actual query function that asks if hardware acceleration is
* available.
*/
static bool sha512_hw_available(void);
/*
* The top-level selection function, caching the results of
* sha512_hw_available() so it only has to run once.
*/
static bool sha512_hw_available_cached(void)
{
static bool initialised = false;
static bool hw_available;
if (!initialised) {
hw_available = sha512_hw_available();
initialised = true;
}
return hw_available;
}
struct sha512_select_options {
const ssh_hashalg *hw, *sw;
};
static ssh_hash *sha512_select(const ssh_hashalg *alg)
{
const struct sha512_select_options *options =
(const struct sha512_select_options *)alg->extra;
const ssh_hashalg *real_alg =
sha512_hw_available_cached() ? options->hw : options->sw;
return ssh_hash_new(real_alg);
}
const struct sha512_select_options ssh_sha512_select_options = {
&ssh_sha512_hw, &ssh_sha512_sw,
};
const struct sha512_select_options ssh_sha384_select_options = {
&ssh_sha384_hw, &ssh_sha384_sw,
};
const ssh_hashalg ssh_sha512 = {
.new = sha512_select,
.hlen = 64,
.blocklen = 128,
HASHALG_NAMES_ANNOTATED("SHA-512", "dummy selector vtable"),
.extra = &ssh_sha512_select_options,
};
const ssh_hashalg ssh_sha384 = {
.new = sha512_select,
.hlen = 48,
.blocklen = 128,
HASHALG_NAMES_ANNOTATED("SHA-384", "dummy selector vtable"),
.extra = &ssh_sha384_select_options,
};
/* ----------------------------------------------------------------------
* Definitions likely to be helpful to multiple implementations.
*/
static const uint64_t sha512_initial_state[] = {
0x6a09e667f3bcc908ULL,
0xbb67ae8584caa73bULL,
0x3c6ef372fe94f82bULL,
0xa54ff53a5f1d36f1ULL,
0x510e527fade682d1ULL,
0x9b05688c2b3e6c1fULL,
0x1f83d9abfb41bd6bULL,
0x5be0cd19137e2179ULL,
};
static const uint64_t sha384_initial_state[] = {
0xcbbb9d5dc1059ed8ULL,
0x629a292a367cd507ULL,
0x9159015a3070dd17ULL,
0x152fecd8f70e5939ULL,
0x67332667ffc00b31ULL,
0x8eb44a8768581511ULL,
0xdb0c2e0d64f98fa7ULL,
0x47b5481dbefa4fa4ULL,
};
static const uint64_t sha512_round_constants[] = {
0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
0xd807aa98a3030242ULL, 0x12835b0145706fbeULL,
0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL,
0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL,
0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL,
0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL,
0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL,
0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
0xd192e819d6ef5218ULL, 0xd69906245565a910ULL,
0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL,
0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL,
0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL,
0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL,
0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
0x28db77f523047d84ULL, 0x32caab7b40c72493ULL,
0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL,
};
#define SHA512_ROUNDS 80
typedef struct sha512_block sha512_block;
struct sha512_block {
uint8_t block[128];
size_t used;
uint64_t lenhi, lenlo;
};
static inline void sha512_block_setup(sha512_block *blk)
{
blk->used = 0;
blk->lenhi = blk->lenlo = 0;
}
static inline bool sha512_block_write(
sha512_block *blk, const void **vdata, size_t *len)
{
size_t blkleft = sizeof(blk->block) - blk->used;
size_t chunk = *len < blkleft ? *len : blkleft;
const uint8_t *p = *vdata;
memcpy(blk->block + blk->used, p, chunk);
*vdata = p + chunk;
*len -= chunk;
blk->used += chunk;
size_t chunkbits = chunk << 3;
blk->lenlo += chunkbits;
blk->lenhi += (blk->lenlo < chunkbits);
if (blk->used == sizeof(blk->block)) {
blk->used = 0;
return true;
}
return false;
}
static inline void sha512_block_pad(sha512_block *blk, BinarySink *bs)
{
uint64_t final_lenhi = blk->lenhi;
uint64_t final_lenlo = blk->lenlo;
size_t pad = 127 & (111 - blk->used);
put_byte(bs, 0x80);
put_padding(bs, pad, 0);
put_uint64(bs, final_lenhi);
put_uint64(bs, final_lenlo);
assert(blk->used == 0 && "Should have exactly hit a block boundary");
}
/* ----------------------------------------------------------------------
* Software implementation of SHA-512.
*/
static inline uint64_t ror(uint64_t x, unsigned y)
{
return (x << (63 & -y)) | (x >> (63 & y));
}
static inline uint64_t Ch(uint64_t ctrl, uint64_t if1, uint64_t if0)
{
return if0 ^ (ctrl & (if1 ^ if0));
}
static inline uint64_t Maj(uint64_t x, uint64_t y, uint64_t z)
{
return (x & y) | (z & (x | y));
}
static inline uint64_t Sigma_0(uint64_t x)
{
return ror(x,28) ^ ror(x,34) ^ ror(x,39);
}
static inline uint64_t Sigma_1(uint64_t x)
{
return ror(x,14) ^ ror(x,18) ^ ror(x,41);
}
static inline uint64_t sigma_0(uint64_t x)
{
return ror(x,1) ^ ror(x,8) ^ (x >> 7);
}
static inline uint64_t sigma_1(uint64_t x)
{
return ror(x,19) ^ ror(x,61) ^ (x >> 6);
}
static inline void sha512_sw_round(
unsigned round_index, const uint64_t *schedule,
uint64_t *a, uint64_t *b, uint64_t *c, uint64_t *d,
uint64_t *e, uint64_t *f, uint64_t *g, uint64_t *h)
{
uint64_t t1 = *h + Sigma_1(*e) + Ch(*e,*f,*g) +
sha512_round_constants[round_index] + schedule[round_index];
uint64_t t2 = Sigma_0(*a) + Maj(*a,*b,*c);
*d += t1;
*h = t1 + t2;
}
static void sha512_sw_block(uint64_t *core, const uint8_t *block)
{
uint64_t w[SHA512_ROUNDS];
uint64_t a,b,c,d,e,f,g,h;
int t;
for (t = 0; t < 16; t++)
w[t] = GET_64BIT_MSB_FIRST(block + 8*t);
for (t = 16; t < SHA512_ROUNDS; t++)
w[t] = w[t-16] + w[t-7] + sigma_0(w[t-15]) + sigma_1(w[t-2]);
a = core[0]; b = core[1]; c = core[2]; d = core[3];
e = core[4]; f = core[5]; g = core[6]; h = core[7];
for (t = 0; t < SHA512_ROUNDS; t+=8) {
sha512_sw_round(t+0, w, &a,&b,&c,&d,&e,&f,&g,&h);
sha512_sw_round(t+1, w, &h,&a,&b,&c,&d,&e,&f,&g);
sha512_sw_round(t+2, w, &g,&h,&a,&b,&c,&d,&e,&f);
sha512_sw_round(t+3, w, &f,&g,&h,&a,&b,&c,&d,&e);
sha512_sw_round(t+4, w, &e,&f,&g,&h,&a,&b,&c,&d);
sha512_sw_round(t+5, w, &d,&e,&f,&g,&h,&a,&b,&c);
sha512_sw_round(t+6, w, &c,&d,&e,&f,&g,&h,&a,&b);
sha512_sw_round(t+7, w, &b,&c,&d,&e,&f,&g,&h,&a);
}
core[0] += a; core[1] += b; core[2] += c; core[3] += d;
core[4] += e; core[5] += f; core[6] += g; core[7] += h;
smemclr(w, sizeof(w));
}
typedef struct sha512_sw {
uint64_t core[8];
sha512_block blk;
BinarySink_IMPLEMENTATION;
ssh_hash hash;
} sha512_sw;
static void sha512_sw_write(BinarySink *bs, const void *vp, size_t len);
static ssh_hash *sha512_sw_new(const ssh_hashalg *alg)
{
sha512_sw *s = snew(sha512_sw);
s->hash.vt = alg;
BinarySink_INIT(s, sha512_sw_write);
BinarySink_DELEGATE_INIT(&s->hash, s);
return &s->hash;
}
static void sha512_sw_reset(ssh_hash *hash)
{
sha512_sw *s = container_of(hash, sha512_sw, hash);
/* The 'extra' field in the ssh_hashalg indicates which
* initialisation vector we're using */
memcpy(s->core, hash->vt->extra, sizeof(s->core));
sha512_block_setup(&s->blk);
}
static void sha512_sw_copyfrom(ssh_hash *hcopy, ssh_hash *horig)
{
sha512_sw *copy = container_of(hcopy, sha512_sw, hash);
sha512_sw *orig = container_of(horig, sha512_sw, hash);
memcpy(copy, orig, sizeof(*copy));
BinarySink_COPIED(copy);
BinarySink_DELEGATE_INIT(&copy->hash, copy);
}
static void sha512_sw_free(ssh_hash *hash)
{
sha512_sw *s = container_of(hash, sha512_sw, hash);
smemclr(s, sizeof(*s));
sfree(s);
}
static void sha512_sw_write(BinarySink *bs, const void *vp, size_t len)
{
sha512_sw *s = BinarySink_DOWNCAST(bs, sha512_sw);
while (len > 0)
if (sha512_block_write(&s->blk, &vp, &len))
sha512_sw_block(s->core, s->blk.block);
}
static void sha512_sw_digest(ssh_hash *hash, uint8_t *digest)
{
sha512_sw *s = container_of(hash, sha512_sw, hash);
sha512_block_pad(&s->blk, BinarySink_UPCAST(s));
for (size_t i = 0; i < hash->vt->hlen / 8; i++)
PUT_64BIT_MSB_FIRST(digest + 8*i, s->core[i]);
}
const ssh_hashalg ssh_sha512_sw = {
.new = sha512_sw_new,
.reset = sha512_sw_reset,
.copyfrom = sha512_sw_copyfrom,
.digest = sha512_sw_digest,
.free = sha512_sw_free,
.hlen = 64,
.blocklen = 128,
HASHALG_NAMES_ANNOTATED("SHA-512", "unaccelerated"),
.extra = sha512_initial_state,
};
const ssh_hashalg ssh_sha384_sw = {
.new = sha512_sw_new,
.reset = sha512_sw_reset,
.copyfrom = sha512_sw_copyfrom,
.digest = sha512_sw_digest,
.free = sha512_sw_free,
.hlen = 48,
.blocklen = 128,
HASHALG_NAMES_ANNOTATED("SHA-384", "unaccelerated"),
.extra = sha384_initial_state,
};
/* ----------------------------------------------------------------------
* Hardware-accelerated implementation of SHA-512 using Arm NEON.
*/
#if HW_SHA512 == HW_SHA512_NEON
/*
* Manually set the target architecture, if we decided above that we
* need to.
*/
#ifdef USE_CLANG_ATTR_TARGET_AARCH64
/*
* A spot of cheating: redefine some ACLE feature macros before
* including arm_neon.h. Otherwise we won't get the SHA intrinsics
* defined by that header, because it will be looking at the settings
* for the whole translation unit rather than the ones we're going to
* put on some particular functions using __attribute__((target)).
*/
#define __ARM_NEON 1
#define __ARM_FEATURE_CRYPTO 1
#define FUNC_ISA __attribute__ ((target("neon,sha3")))
#endif /* USE_CLANG_ATTR_TARGET_AARCH64 */
#ifndef FUNC_ISA
#define FUNC_ISA
#endif
#ifdef USE_ARM64_NEON_H
#include <arm64_neon.h>
#else
#include <arm_neon.h>
#endif
static bool sha512_hw_available(void)
{
/*
* For Arm, we delegate to a per-platform detection function (see
* explanation in sshaes.c).
*/
return platform_sha512_hw_available();
}
#if defined __clang__
/*
* As of 2020-12-24, I've found that clang doesn't provide the SHA-512
* NEON intrinsics. So I define my own set using inline assembler, and
* use #define to effectively rename them over the top of the standard
* names.
*
* The aim of that #define technique is that it should avoid a build
* failure if these intrinsics _are_ defined in <arm_neon.h>.
* Obviously it would be better in that situation to switch back to
* using the real intrinsics, but until I see a version of clang that
* supports them, I won't know what version number to test in the
* ifdef.
*/
static inline FUNC_ISA
uint64x2_t vsha512su0q_u64_asm(uint64x2_t x, uint64x2_t y) {
__asm__("sha512su0 %0.2D,%1.2D" : "+w" (x) : "w" (y));
return x;
}
static inline FUNC_ISA
uint64x2_t vsha512su1q_u64_asm(uint64x2_t x, uint64x2_t y, uint64x2_t z) {
__asm__("sha512su1 %0.2D,%1.2D,%2.2D" : "+w" (x) : "w" (y), "w" (z));
return x;
}
static inline FUNC_ISA
uint64x2_t vsha512hq_u64_asm(uint64x2_t x, uint64x2_t y, uint64x2_t z) {
__asm__("sha512h %0,%1,%2.2D" : "+w" (x) : "w" (y), "w" (z));
return x;
}
static inline FUNC_ISA
uint64x2_t vsha512h2q_u64_asm(uint64x2_t x, uint64x2_t y, uint64x2_t z) {
__asm__("sha512h2 %0,%1,%2.2D" : "+w" (x) : "w" (y), "w" (z));
return x;
}
#undef vsha512su0q_u64
#define vsha512su0q_u64 vsha512su0q_u64_asm
#undef vsha512su1q_u64
#define vsha512su1q_u64 vsha512su1q_u64_asm
#undef vsha512hq_u64
#define vsha512hq_u64 vsha512hq_u64_asm
#undef vsha512h2q_u64
#define vsha512h2q_u64 vsha512h2q_u64_asm
#endif /* defined __clang__ */
typedef struct sha512_neon_core sha512_neon_core;
struct sha512_neon_core {
uint64x2_t ab, cd, ef, gh;
};
FUNC_ISA
static inline uint64x2_t sha512_neon_load_input(const uint8_t *p)
{
return vreinterpretq_u64_u8(vrev64q_u8(vld1q_u8(p)));
}
FUNC_ISA
static inline uint64x2_t sha512_neon_schedule_update(
uint64x2_t m8, uint64x2_t m7, uint64x2_t m4, uint64x2_t m3, uint64x2_t m1)
{
/*
* vsha512su0q_u64() takes words from a long way back in the
* schedule and performs the sigma_0 half of the computation of
* the next two 64-bit message-schedule words.
*
* vsha512su1q_u64() combines the result of that with the sigma_1
* steps, to output the finished version of those two words. The
* total amount of input data it requires fits nicely into three
* 128-bit vector registers, but one of those registers is
* misaligned compared to the 128-bit chunks that the message
* schedule is stored in. So we use vextq_u64 to make one of its
* input words out of the second half of m4 and the first half of
* m3.
*/
return vsha512su1q_u64(vsha512su0q_u64(m8, m7), m1, vextq_u64(m4, m3, 1));
}
FUNC_ISA
static inline void sha512_neon_round2(
unsigned round_index, uint64x2_t schedule_words,
uint64x2_t *ab, uint64x2_t *cd, uint64x2_t *ef, uint64x2_t *gh)
{
/*
* vsha512hq_u64 performs the Sigma_1 and Ch half of the
* computation of two rounds of SHA-512 (including feeding back
* one of the outputs from the first of those half-rounds into the
* second one).
*
* vsha512h2q_u64 combines the result of that with the Sigma_0 and
* Maj steps, and outputs one 128-bit vector that replaces the gh
* piece of the input hash state, and a second that updates cd by
* addition.
*
* Similarly to vsha512su1q_u64 above, some of the input registers
* expected by these instructions are misaligned by 64 bits
* relative to the chunks we've divided the hash state into, so we
* have to start by making 'de' and 'fg' words out of our input
* cd,ef,gh, using vextq_u64.
*
* Also, one of the inputs to vsha512hq_u64 is expected to contain
* the results of summing gh + two round constants + two words of
* message schedule, but the two words of the message schedule
* have to be the opposite way round in the vector register from
* the way that vsha512su1q_u64 output them. Hence, there's
* another vextq_u64 in here that swaps the two halves of the
* initial_sum vector register.
*
* (This also means that I don't have to prepare a specially
* reordered version of the sha512_round_constants[] array: as
* long as I'm unavoidably doing a swap at run time _anyway_, I
* can load from the normally ordered version of that array, and
* just take care to fold in that data _before_ the swap rather
* than after.)
*/
/* Load two round constants, with the first one in the low half */
uint64x2_t round_constants = vld1q_u64(
sha512_round_constants + round_index);
/* Add schedule words to round constants */
uint64x2_t initial_sum = vaddq_u64(schedule_words, round_constants);
/* Swap that sum around so the word used in the first of the two
* rounds is in the _high_ half of the vector, matching where h
* lives in the gh vector */
uint64x2_t swapped_initial_sum = vextq_u64(initial_sum, initial_sum, 1);
/* Add gh to that, now that they're matching ways round */
uint64x2_t sum = vaddq_u64(swapped_initial_sum, *gh);
/* Make the misaligned de and fg words */
uint64x2_t de = vextq_u64(*cd, *ef, 1);
uint64x2_t fg = vextq_u64(*ef, *gh, 1);
/* Now we're ready to put all the pieces together. The output from
* vsha512h2q_u64 can be used directly as the new gh, and the
* output from vsha512hq_u64 is simultaneously the intermediate
* value passed to h2 and the thing you have to add on to cd. */
uint64x2_t intermed = vsha512hq_u64(sum, fg, de);
*gh = vsha512h2q_u64(intermed, *cd, *ab);
*cd = vaddq_u64(*cd, intermed);
}
FUNC_ISA
static inline void sha512_neon_block(sha512_neon_core *core, const uint8_t *p)
{
uint64x2_t s0, s1, s2, s3, s4, s5, s6, s7;
uint64x2_t ab = core->ab, cd = core->cd, ef = core->ef, gh = core->gh;
s0 = sha512_neon_load_input(p + 16*0);
sha512_neon_round2(0, s0, &ab, &cd, &ef, &gh);
s1 = sha512_neon_load_input(p + 16*1);
sha512_neon_round2(2, s1, &gh, &ab, &cd, &ef);
s2 = sha512_neon_load_input(p + 16*2);
sha512_neon_round2(4, s2, &ef, &gh, &ab, &cd);
s3 = sha512_neon_load_input(p + 16*3);
sha512_neon_round2(6, s3, &cd, &ef, &gh, &ab);
s4 = sha512_neon_load_input(p + 16*4);
sha512_neon_round2(8, s4, &ab, &cd, &ef, &gh);
s5 = sha512_neon_load_input(p + 16*5);
sha512_neon_round2(10, s5, &gh, &ab, &cd, &ef);
s6 = sha512_neon_load_input(p + 16*6);
sha512_neon_round2(12, s6, &ef, &gh, &ab, &cd);
s7 = sha512_neon_load_input(p + 16*7);
sha512_neon_round2(14, s7, &cd, &ef, &gh, &ab);
s0 = sha512_neon_schedule_update(s0, s1, s4, s5, s7);
sha512_neon_round2(16, s0, &ab, &cd, &ef, &gh);
s1 = sha512_neon_schedule_update(s1, s2, s5, s6, s0);
sha512_neon_round2(18, s1, &gh, &ab, &cd, &ef);
s2 = sha512_neon_schedule_update(s2, s3, s6, s7, s1);
sha512_neon_round2(20, s2, &ef, &gh, &ab, &cd);
s3 = sha512_neon_schedule_update(s3, s4, s7, s0, s2);
sha512_neon_round2(22, s3, &cd, &ef, &gh, &ab);
s4 = sha512_neon_schedule_update(s4, s5, s0, s1, s3);
sha512_neon_round2(24, s4, &ab, &cd, &ef, &gh);
s5 = sha512_neon_schedule_update(s5, s6, s1, s2, s4);
sha512_neon_round2(26, s5, &gh, &ab, &cd, &ef);
s6 = sha512_neon_schedule_update(s6, s7, s2, s3, s5);
sha512_neon_round2(28, s6, &ef, &gh, &ab, &cd);
s7 = sha512_neon_schedule_update(s7, s0, s3, s4, s6);
sha512_neon_round2(30, s7, &cd, &ef, &gh, &ab);
s0 = sha512_neon_schedule_update(s0, s1, s4, s5, s7);
sha512_neon_round2(32, s0, &ab, &cd, &ef, &gh);
s1 = sha512_neon_schedule_update(s1, s2, s5, s6, s0);
sha512_neon_round2(34, s1, &gh, &ab, &cd, &ef);
s2 = sha512_neon_schedule_update(s2, s3, s6, s7, s1);
sha512_neon_round2(36, s2, &ef, &gh, &ab, &cd);
s3 = sha512_neon_schedule_update(s3, s4, s7, s0, s2);
sha512_neon_round2(38, s3, &cd, &ef, &gh, &ab);
s4 = sha512_neon_schedule_update(s4, s5, s0, s1, s3);
sha512_neon_round2(40, s4, &ab, &cd, &ef, &gh);
s5 = sha512_neon_schedule_update(s5, s6, s1, s2, s4);
sha512_neon_round2(42, s5, &gh, &ab, &cd, &ef);
s6 = sha512_neon_schedule_update(s6, s7, s2, s3, s5);
sha512_neon_round2(44, s6, &ef, &gh, &ab, &cd);
s7 = sha512_neon_schedule_update(s7, s0, s3, s4, s6);
sha512_neon_round2(46, s7, &cd, &ef, &gh, &ab);
s0 = sha512_neon_schedule_update(s0, s1, s4, s5, s7);
sha512_neon_round2(48, s0, &ab, &cd, &ef, &gh);
s1 = sha512_neon_schedule_update(s1, s2, s5, s6, s0);
sha512_neon_round2(50, s1, &gh, &ab, &cd, &ef);
s2 = sha512_neon_schedule_update(s2, s3, s6, s7, s1);
sha512_neon_round2(52, s2, &ef, &gh, &ab, &cd);
s3 = sha512_neon_schedule_update(s3, s4, s7, s0, s2);
sha512_neon_round2(54, s3, &cd, &ef, &gh, &ab);
s4 = sha512_neon_schedule_update(s4, s5, s0, s1, s3);
sha512_neon_round2(56, s4, &ab, &cd, &ef, &gh);
s5 = sha512_neon_schedule_update(s5, s6, s1, s2, s4);
sha512_neon_round2(58, s5, &gh, &ab, &cd, &ef);
s6 = sha512_neon_schedule_update(s6, s7, s2, s3, s5);
sha512_neon_round2(60, s6, &ef, &gh, &ab, &cd);
s7 = sha512_neon_schedule_update(s7, s0, s3, s4, s6);
sha512_neon_round2(62, s7, &cd, &ef, &gh, &ab);
s0 = sha512_neon_schedule_update(s0, s1, s4, s5, s7);
sha512_neon_round2(64, s0, &ab, &cd, &ef, &gh);
s1 = sha512_neon_schedule_update(s1, s2, s5, s6, s0);
sha512_neon_round2(66, s1, &gh, &ab, &cd, &ef);
s2 = sha512_neon_schedule_update(s2, s3, s6, s7, s1);
sha512_neon_round2(68, s2, &ef, &gh, &ab, &cd);
s3 = sha512_neon_schedule_update(s3, s4, s7, s0, s2);
sha512_neon_round2(70, s3, &cd, &ef, &gh, &ab);
s4 = sha512_neon_schedule_update(s4, s5, s0, s1, s3);
sha512_neon_round2(72, s4, &ab, &cd, &ef, &gh);
s5 = sha512_neon_schedule_update(s5, s6, s1, s2, s4);
sha512_neon_round2(74, s5, &gh, &ab, &cd, &ef);
s6 = sha512_neon_schedule_update(s6, s7, s2, s3, s5);
sha512_neon_round2(76, s6, &ef, &gh, &ab, &cd);
s7 = sha512_neon_schedule_update(s7, s0, s3, s4, s6);
sha512_neon_round2(78, s7, &cd, &ef, &gh, &ab);
core->ab = vaddq_u64(core->ab, ab);
core->cd = vaddq_u64(core->cd, cd);
core->ef = vaddq_u64(core->ef, ef);
core->gh = vaddq_u64(core->gh, gh);
}
typedef struct sha512_neon {
sha512_neon_core core;
sha512_block blk;
BinarySink_IMPLEMENTATION;
ssh_hash hash;
} sha512_neon;
static void sha512_neon_write(BinarySink *bs, const void *vp, size_t len);
static ssh_hash *sha512_neon_new(const ssh_hashalg *alg)
{
if (!sha512_hw_available_cached())
return NULL;
sha512_neon *s = snew(sha512_neon);
s->hash.vt = alg;
BinarySink_INIT(s, sha512_neon_write);
BinarySink_DELEGATE_INIT(&s->hash, s);
return &s->hash;
}
static void sha512_neon_reset(ssh_hash *hash)
{
sha512_neon *s = container_of(hash, sha512_neon, hash);
const uint64_t *iv = (const uint64_t *)hash->vt->extra;
s->core.ab = vld1q_u64(iv);
s->core.cd = vld1q_u64(iv+2);
s->core.ef = vld1q_u64(iv+4);
s->core.gh = vld1q_u64(iv+6);
sha512_block_setup(&s->blk);
}
static void sha512_neon_copyfrom(ssh_hash *hcopy, ssh_hash *horig)
{
sha512_neon *copy = container_of(hcopy, sha512_neon, hash);
sha512_neon *orig = container_of(horig, sha512_neon, hash);
*copy = *orig; /* structure copy */
BinarySink_COPIED(copy);
BinarySink_DELEGATE_INIT(&copy->hash, copy);
}
static void sha512_neon_free(ssh_hash *hash)
{
sha512_neon *s = container_of(hash, sha512_neon, hash);
smemclr(s, sizeof(*s));
sfree(s);
}
static void sha512_neon_write(BinarySink *bs, const void *vp, size_t len)
{
sha512_neon *s = BinarySink_DOWNCAST(bs, sha512_neon);
while (len > 0)
if (sha512_block_write(&s->blk, &vp, &len))
sha512_neon_block(&s->core, s->blk.block);
}
static void sha512_neon_digest(ssh_hash *hash, uint8_t *digest)
{
sha512_neon *s = container_of(hash, sha512_neon, hash);
sha512_block_pad(&s->blk, BinarySink_UPCAST(s));
vst1q_u8(digest, vrev64q_u8(vreinterpretq_u8_u64(s->core.ab)));
vst1q_u8(digest+16, vrev64q_u8(vreinterpretq_u8_u64(s->core.cd)));
vst1q_u8(digest+32, vrev64q_u8(vreinterpretq_u8_u64(s->core.ef)));
vst1q_u8(digest+48, vrev64q_u8(vreinterpretq_u8_u64(s->core.gh)));
}
static void sha384_neon_digest(ssh_hash *hash, uint8_t *digest)
{
sha512_neon *s = container_of(hash, sha512_neon, hash);
sha512_block_pad(&s->blk, BinarySink_UPCAST(s));
vst1q_u8(digest, vrev64q_u8(vreinterpretq_u8_u64(s->core.ab)));
vst1q_u8(digest+16, vrev64q_u8(vreinterpretq_u8_u64(s->core.cd)));
vst1q_u8(digest+32, vrev64q_u8(vreinterpretq_u8_u64(s->core.ef)));
}
const ssh_hashalg ssh_sha512_hw = {
.new = sha512_neon_new,
.reset = sha512_neon_reset,
.copyfrom = sha512_neon_copyfrom,
.digest = sha512_neon_digest,
.free = sha512_neon_free,
.hlen = 64,
.blocklen = 128,
HASHALG_NAMES_ANNOTATED("SHA-512", "NEON accelerated"),
.extra = sha512_initial_state,
};
const ssh_hashalg ssh_sha384_hw = {
.new = sha512_neon_new,
.reset = sha512_neon_reset,
.copyfrom = sha512_neon_copyfrom,
.digest = sha384_neon_digest,
.free = sha512_neon_free,
.hlen = 48,
.blocklen = 128,
HASHALG_NAMES_ANNOTATED("SHA-384", "NEON accelerated"),
.extra = sha384_initial_state,
};
/* ----------------------------------------------------------------------
* Stub functions if we have no hardware-accelerated SHA-512. In this
* case, sha512_hw_new returns NULL (though it should also never be
* selected by sha512_select, so the only thing that should even be
* _able_ to call it is testcrypt). As a result, the remaining vtable
* functions should never be called at all.
*/
#elif HW_SHA512 == HW_SHA512_NONE
static bool sha512_hw_available(void)
{
return false;
}
static ssh_hash *sha512_stub_new(const ssh_hashalg *alg)
{
return NULL;
}
#define STUB_BODY { unreachable("Should never be called"); }
static void sha512_stub_reset(ssh_hash *hash) STUB_BODY
static void sha512_stub_copyfrom(ssh_hash *hash, ssh_hash *orig) STUB_BODY
static void sha512_stub_free(ssh_hash *hash) STUB_BODY
static void sha512_stub_digest(ssh_hash *hash, uint8_t *digest) STUB_BODY
const ssh_hashalg ssh_sha512_hw = {
.new = sha512_stub_new,
.reset = sha512_stub_reset,
.copyfrom = sha512_stub_copyfrom,
.digest = sha512_stub_digest,
.free = sha512_stub_free,
.hlen = 64,
.blocklen = 128,
HASHALG_NAMES_ANNOTATED("SHA-512", "!NONEXISTENT ACCELERATED VERSION!"),
};
const ssh_hashalg ssh_sha384_hw = {
.new = sha512_stub_new,
.reset = sha512_stub_reset,
.copyfrom = sha512_stub_copyfrom,
.digest = sha512_stub_digest,
.free = sha512_stub_free,
.hlen = 48,
.blocklen = 128,
HASHALG_NAMES_ANNOTATED("SHA-384", "!NONEXISTENT ACCELERATED VERSION!"),
};
#endif /* HW_SHA512 */