1
0
mirror of https://git.tartarus.org/simon/putty.git synced 2025-01-10 01:48:00 +00:00
putty-source/sshprime.c
Simon Tatham 750f5222b2 Factor out Miller-Rabin checking into its own file.
This further cleans up the prime-generation code, to the point where
the main primegen() function has almost nothing in it. Also now I'll
be able to reuse M-R as a primitive in more sophisticated alternatives
to primegen().
2020-02-29 16:53:34 +00:00

126 lines
3.6 KiB
C

/*
* Prime generation.
*/
#include <assert.h>
#include <math.h>
#include "ssh.h"
#include "mpint.h"
#include "mpunsafe.h"
#include "sshkeygen.h"
/*
* This prime generation algorithm is pretty much cribbed from
* OpenSSL. The algorithm is:
*
* - invent a B-bit random number and ensure the top and bottom
* bits are set (so it's definitely B-bit, and it's definitely
* odd)
*
* - see if it's coprime to all primes below 2^16; increment it by
* two until it is (this shouldn't take long in general)
*
* - perform the Miller-Rabin primality test enough times to
* ensure the probability of it being composite is 2^-80 or
* less
*
* - go back to square one if any M-R test fails.
*/
ProgressPhase primegen_add_progress_phase(ProgressReceiver *prog,
unsigned bits)
{
/*
* The density of primes near x is 1/(log x). When x is about 2^b,
* that's 1/(b log 2).
*
* But we're only doing the expensive part of the process (the M-R
* checks) for a number that passes the initial winnowing test of
* having no factor less than 2^16 (at least, unless the prime is
* so small that PrimeCandidateSource gives up on that winnowing).
* The density of _those_ numbers is about 1/19.76. So the odds of
* hitting a prime per expensive attempt are boosted by a factor
* of 19.76.
*/
const double log_2 = 0.693147180559945309417232121458;
double winnow_factor = (bits < 32 ? 1.0 : 19.76);
double prob = winnow_factor / (bits * log_2);
/*
* Estimate the cost of prime generation as the cost of the M-R
* modexps.
*/
double cost = (miller_rabin_checks_needed(bits) *
estimate_modexp_cost(bits));
return progress_add_probabilistic(prog, cost, prob);
}
mp_int *primegen(PrimeCandidateSource *pcs, ProgressReceiver *prog)
{
pcs_ready(pcs);
while (true) {
progress_report_attempt(prog);
mp_int *p = pcs_generate(pcs);
MillerRabin *mr = miller_rabin_new(p);
bool known_bad = false;
unsigned nchecks = miller_rabin_checks_needed(mp_get_nbits(p));
for (unsigned check = 0; check < nchecks; check++) {
if (!miller_rabin_test_random(mr)) {
known_bad = true;
break;
}
}
miller_rabin_free(mr);
if (!known_bad) {
/*
* We have a prime!
*/
pcs_free(pcs);
return p;
}
mp_free(p);
}
}
/* ----------------------------------------------------------------------
* Reusable null implementation of the progress-reporting API.
*/
ProgressPhase null_progress_add_probabilistic(
ProgressReceiver *prog, double c, double p) {
ProgressPhase ph = { .n = 0 };
return ph;
}
void null_progress_ready(ProgressReceiver *prog) {}
void null_progress_start_phase(ProgressReceiver *prog, ProgressPhase phase) {}
void null_progress_report_attempt(ProgressReceiver *prog) {}
void null_progress_report_phase_complete(ProgressReceiver *prog) {}
const ProgressReceiverVtable null_progress_vt = {
null_progress_add_probabilistic,
null_progress_ready,
null_progress_start_phase,
null_progress_report_attempt,
null_progress_report_phase_complete,
};
/* ----------------------------------------------------------------------
* Helper function for progress estimation.
*/
double estimate_modexp_cost(unsigned bits)
{
/*
* A modexp of n bits goes roughly like O(n^2.58), on the grounds
* that our modmul is O(n^1.58) (Karatsuba) and you need O(n) of
* them in a modexp.
*/
return pow(bits, 2.58);
}