1
0
mirror of https://git.tartarus.org/simon/putty.git synced 2025-01-10 01:48:00 +00:00
putty-source/sshbn.c

2179 lines
60 KiB
C
Raw Normal View History

/*
* Bignum routines for RSA and DH and stuff.
*/
#include <stdio.h>
#include <assert.h>
#include <stdlib.h>
#include <string.h>
#include <limits.h>
2015-05-12 11:10:42 +00:00
#include <ctype.h>
#include "misc.h"
#include "sshbn.h"
#define BIGNUM_INTERNAL
typedef BignumInt *Bignum;
#include "ssh.h"
New centralised binary-data marshalling system. I've finally got tired of all the code throughout PuTTY that repeats the same logic about how to format the SSH binary primitives like uint32, string, mpint. We've got reasonably organised code in ssh.c that appends things like that to 'struct Packet'; something similar in sftp.c which repeats a lot of the work; utility functions in various places to format an mpint to feed to one or another hash function; and no end of totally ad-hoc stuff in functions like public key blob formatters which actually have to _count up_ the size of data painstakingly, then malloc exactly that much and mess about with PUT_32BIT. It's time to bring all of that into one place, and stop repeating myself in error-prone ways everywhere. The new marshal.h defines a system in which I centralise all the actual marshalling functions, and then layer a touch of C macro trickery on top to allow me to (look as if I) pass a wide range of different types to those functions, as long as the target type has been set up in the right way to have a write() function. This commit adds the new header and source file, and sets up some general centralised types (strbuf and the various hash-function contexts like SHA_State), but doesn't use the new calls for anything yet. (I've also renamed some internal functions in import.c which were using the same names that I've just defined macros over. That won't last long - those functions are going to go away soon, so the changed names are strictly temporary.)
2018-05-24 08:17:13 +00:00
#include "marshal.h"
BignumInt bnZero[1] = { 0 };
BignumInt bnOne[2] = { 1, 1 };
2015-05-12 11:10:42 +00:00
BignumInt bnTen[2] = { 1, 10 };
/*
* The Bignum format is an array of `BignumInt'. The first
* element of the array counts the remaining elements. The
* remaining elements express the actual number, base 2^BIGNUM_INT_BITS, _least_
* significant digit first. (So it's trivial to extract the bit
* with value 2^n for any n.)
*
* All Bignums in this module are positive. Negative numbers must
* be dealt with outside it.
*
* INVARIANT: the most significant word of any Bignum must be
* nonzero.
*/
2015-05-12 11:10:42 +00:00
Bignum Zero = bnZero, One = bnOne, Ten = bnTen;
static Bignum newbn(int length)
{
Bignum b;
assert(length >= 0 && length < INT_MAX / BIGNUM_INT_BITS);
b = snewn(length + 1, BignumInt);
memset(b, 0, (length + 1) * sizeof(*b));
b[0] = length;
return b;
}
void bn_restore_invariant(Bignum b)
{
while (b[0] > 1 && b[b[0]] == 0)
b[0]--;
}
Bignum copybn(Bignum orig)
{
Bignum b = snewn(orig[0] + 1, BignumInt);
if (!b)
abort(); /* FIXME */
memcpy(b, orig, (orig[0] + 1) * sizeof(*b));
return b;
}
void freebn(Bignum b)
{
/*
* Burn the evidence, just in case.
*/
smemclr(b, sizeof(b[0]) * (b[0] + 1));
sfree(b);
}
Bignum bn_power_2(int n)
{
Bignum ret;
assert(n >= 0);
ret = newbn(n / BIGNUM_INT_BITS + 1);
bignum_set_bit(ret, n, 1);
return ret;
}
/*
* Internal addition. Sets c = a - b, where 'a', 'b' and 'c' are all
Relegate BignumDblInt to an implementation detail of sshbn.h. As I mentioned in the previous commit, I'm going to want PuTTY to be able to run sensibly when compiled with 64-bit Visual Studio, including handling bignums in 64-bit chunks for speed. Unfortunately, 64-bit VS does not provide any type we can use as BignumDblInt in that situation (unlike 64-bit gcc and clang, which give us __uint128_t). The only facilities it provides are compiler intrinsics to access an add-with-carry operation and a 64x64->128 multiplication (the latter delivering its product in two separate 64-bit output chunks). Hence, here's a substantial rework of the bignum code to make it implement everything in terms of _those_ primitives, rather than depending throughout on having BignumDblInt available to use ad-hoc. BignumDblInt does still exist, for the moment, but now it's an internal implementation detail of sshbn.h, only declared inside a new set of macros implementing arithmetic primitives, and not accessible to any code outside sshbn.h (which confirms that I really did catch all uses of it and remove them). The resulting code is surprisingly nice-looking, actually. You'd expect more hassle and roundabout circumlocutions when you drop down to using a more basic set of primitive operations, but actually, in many cases it's turned out shorter to write things in terms of the new BignumADC and BignumMUL macros - because almost all my uses of BignumDblInt were implementing those operations anyway, taking several lines at a time, and now they can do each thing in just one line. The biggest headache was Poly1305: I wasn't able to find any sensible way to adapt the existing Python script that generates the various per-int-size implementations of arithmetic mod 2^130-5, and so I had to rewrite it from scratch instead, with nothing in common with the old version beyond a handful of comments. But even that seems to have worked out nicely: the new version has much more legible descriptions of the high-level algorithms, by virtue of having a 'Multiprecision' type which wraps up the division into words, and yet Multiprecision's range analysis allows it to automatically drop out special cases such as multiplication by 5 being much easier than multiplication by another multi-word integer.
2015-12-16 14:12:26 +00:00
* big-endian arrays of 'len' BignumInts. Returns the carry off the
* top.
*/
Relegate BignumDblInt to an implementation detail of sshbn.h. As I mentioned in the previous commit, I'm going to want PuTTY to be able to run sensibly when compiled with 64-bit Visual Studio, including handling bignums in 64-bit chunks for speed. Unfortunately, 64-bit VS does not provide any type we can use as BignumDblInt in that situation (unlike 64-bit gcc and clang, which give us __uint128_t). The only facilities it provides are compiler intrinsics to access an add-with-carry operation and a 64x64->128 multiplication (the latter delivering its product in two separate 64-bit output chunks). Hence, here's a substantial rework of the bignum code to make it implement everything in terms of _those_ primitives, rather than depending throughout on having BignumDblInt available to use ad-hoc. BignumDblInt does still exist, for the moment, but now it's an internal implementation detail of sshbn.h, only declared inside a new set of macros implementing arithmetic primitives, and not accessible to any code outside sshbn.h (which confirms that I really did catch all uses of it and remove them). The resulting code is surprisingly nice-looking, actually. You'd expect more hassle and roundabout circumlocutions when you drop down to using a more basic set of primitive operations, but actually, in many cases it's turned out shorter to write things in terms of the new BignumADC and BignumMUL macros - because almost all my uses of BignumDblInt were implementing those operations anyway, taking several lines at a time, and now they can do each thing in just one line. The biggest headache was Poly1305: I wasn't able to find any sensible way to adapt the existing Python script that generates the various per-int-size implementations of arithmetic mod 2^130-5, and so I had to rewrite it from scratch instead, with nothing in common with the old version beyond a handful of comments. But even that seems to have worked out nicely: the new version has much more legible descriptions of the high-level algorithms, by virtue of having a 'Multiprecision' type which wraps up the division into words, and yet Multiprecision's range analysis allows it to automatically drop out special cases such as multiplication by 5 being much easier than multiplication by another multi-word integer.
2015-12-16 14:12:26 +00:00
static BignumCarry internal_add(const BignumInt *a, const BignumInt *b,
BignumInt *c, int len)
{
int i;
Relegate BignumDblInt to an implementation detail of sshbn.h. As I mentioned in the previous commit, I'm going to want PuTTY to be able to run sensibly when compiled with 64-bit Visual Studio, including handling bignums in 64-bit chunks for speed. Unfortunately, 64-bit VS does not provide any type we can use as BignumDblInt in that situation (unlike 64-bit gcc and clang, which give us __uint128_t). The only facilities it provides are compiler intrinsics to access an add-with-carry operation and a 64x64->128 multiplication (the latter delivering its product in two separate 64-bit output chunks). Hence, here's a substantial rework of the bignum code to make it implement everything in terms of _those_ primitives, rather than depending throughout on having BignumDblInt available to use ad-hoc. BignumDblInt does still exist, for the moment, but now it's an internal implementation detail of sshbn.h, only declared inside a new set of macros implementing arithmetic primitives, and not accessible to any code outside sshbn.h (which confirms that I really did catch all uses of it and remove them). The resulting code is surprisingly nice-looking, actually. You'd expect more hassle and roundabout circumlocutions when you drop down to using a more basic set of primitive operations, but actually, in many cases it's turned out shorter to write things in terms of the new BignumADC and BignumMUL macros - because almost all my uses of BignumDblInt were implementing those operations anyway, taking several lines at a time, and now they can do each thing in just one line. The biggest headache was Poly1305: I wasn't able to find any sensible way to adapt the existing Python script that generates the various per-int-size implementations of arithmetic mod 2^130-5, and so I had to rewrite it from scratch instead, with nothing in common with the old version beyond a handful of comments. But even that seems to have worked out nicely: the new version has much more legible descriptions of the high-level algorithms, by virtue of having a 'Multiprecision' type which wraps up the division into words, and yet Multiprecision's range analysis allows it to automatically drop out special cases such as multiplication by 5 being much easier than multiplication by another multi-word integer.
2015-12-16 14:12:26 +00:00
BignumCarry carry = 0;
Relegate BignumDblInt to an implementation detail of sshbn.h. As I mentioned in the previous commit, I'm going to want PuTTY to be able to run sensibly when compiled with 64-bit Visual Studio, including handling bignums in 64-bit chunks for speed. Unfortunately, 64-bit VS does not provide any type we can use as BignumDblInt in that situation (unlike 64-bit gcc and clang, which give us __uint128_t). The only facilities it provides are compiler intrinsics to access an add-with-carry operation and a 64x64->128 multiplication (the latter delivering its product in two separate 64-bit output chunks). Hence, here's a substantial rework of the bignum code to make it implement everything in terms of _those_ primitives, rather than depending throughout on having BignumDblInt available to use ad-hoc. BignumDblInt does still exist, for the moment, but now it's an internal implementation detail of sshbn.h, only declared inside a new set of macros implementing arithmetic primitives, and not accessible to any code outside sshbn.h (which confirms that I really did catch all uses of it and remove them). The resulting code is surprisingly nice-looking, actually. You'd expect more hassle and roundabout circumlocutions when you drop down to using a more basic set of primitive operations, but actually, in many cases it's turned out shorter to write things in terms of the new BignumADC and BignumMUL macros - because almost all my uses of BignumDblInt were implementing those operations anyway, taking several lines at a time, and now they can do each thing in just one line. The biggest headache was Poly1305: I wasn't able to find any sensible way to adapt the existing Python script that generates the various per-int-size implementations of arithmetic mod 2^130-5, and so I had to rewrite it from scratch instead, with nothing in common with the old version beyond a handful of comments. But even that seems to have worked out nicely: the new version has much more legible descriptions of the high-level algorithms, by virtue of having a 'Multiprecision' type which wraps up the division into words, and yet Multiprecision's range analysis allows it to automatically drop out special cases such as multiplication by 5 being much easier than multiplication by another multi-word integer.
2015-12-16 14:12:26 +00:00
for (i = len-1; i >= 0; i--)
BignumADC(c[i], carry, a[i], b[i], carry);
return (BignumInt)carry;
}
/*
* Internal subtraction. Sets c = a - b, where 'a', 'b' and 'c' are
* all big-endian arrays of 'len' BignumInts. Any borrow from the top
* is ignored.
*/
static void internal_sub(const BignumInt *a, const BignumInt *b,
BignumInt *c, int len)
{
int i;
Relegate BignumDblInt to an implementation detail of sshbn.h. As I mentioned in the previous commit, I'm going to want PuTTY to be able to run sensibly when compiled with 64-bit Visual Studio, including handling bignums in 64-bit chunks for speed. Unfortunately, 64-bit VS does not provide any type we can use as BignumDblInt in that situation (unlike 64-bit gcc and clang, which give us __uint128_t). The only facilities it provides are compiler intrinsics to access an add-with-carry operation and a 64x64->128 multiplication (the latter delivering its product in two separate 64-bit output chunks). Hence, here's a substantial rework of the bignum code to make it implement everything in terms of _those_ primitives, rather than depending throughout on having BignumDblInt available to use ad-hoc. BignumDblInt does still exist, for the moment, but now it's an internal implementation detail of sshbn.h, only declared inside a new set of macros implementing arithmetic primitives, and not accessible to any code outside sshbn.h (which confirms that I really did catch all uses of it and remove them). The resulting code is surprisingly nice-looking, actually. You'd expect more hassle and roundabout circumlocutions when you drop down to using a more basic set of primitive operations, but actually, in many cases it's turned out shorter to write things in terms of the new BignumADC and BignumMUL macros - because almost all my uses of BignumDblInt were implementing those operations anyway, taking several lines at a time, and now they can do each thing in just one line. The biggest headache was Poly1305: I wasn't able to find any sensible way to adapt the existing Python script that generates the various per-int-size implementations of arithmetic mod 2^130-5, and so I had to rewrite it from scratch instead, with nothing in common with the old version beyond a handful of comments. But even that seems to have worked out nicely: the new version has much more legible descriptions of the high-level algorithms, by virtue of having a 'Multiprecision' type which wraps up the division into words, and yet Multiprecision's range analysis allows it to automatically drop out special cases such as multiplication by 5 being much easier than multiplication by another multi-word integer.
2015-12-16 14:12:26 +00:00
BignumCarry carry = 1;
Relegate BignumDblInt to an implementation detail of sshbn.h. As I mentioned in the previous commit, I'm going to want PuTTY to be able to run sensibly when compiled with 64-bit Visual Studio, including handling bignums in 64-bit chunks for speed. Unfortunately, 64-bit VS does not provide any type we can use as BignumDblInt in that situation (unlike 64-bit gcc and clang, which give us __uint128_t). The only facilities it provides are compiler intrinsics to access an add-with-carry operation and a 64x64->128 multiplication (the latter delivering its product in two separate 64-bit output chunks). Hence, here's a substantial rework of the bignum code to make it implement everything in terms of _those_ primitives, rather than depending throughout on having BignumDblInt available to use ad-hoc. BignumDblInt does still exist, for the moment, but now it's an internal implementation detail of sshbn.h, only declared inside a new set of macros implementing arithmetic primitives, and not accessible to any code outside sshbn.h (which confirms that I really did catch all uses of it and remove them). The resulting code is surprisingly nice-looking, actually. You'd expect more hassle and roundabout circumlocutions when you drop down to using a more basic set of primitive operations, but actually, in many cases it's turned out shorter to write things in terms of the new BignumADC and BignumMUL macros - because almost all my uses of BignumDblInt were implementing those operations anyway, taking several lines at a time, and now they can do each thing in just one line. The biggest headache was Poly1305: I wasn't able to find any sensible way to adapt the existing Python script that generates the various per-int-size implementations of arithmetic mod 2^130-5, and so I had to rewrite it from scratch instead, with nothing in common with the old version beyond a handful of comments. But even that seems to have worked out nicely: the new version has much more legible descriptions of the high-level algorithms, by virtue of having a 'Multiprecision' type which wraps up the division into words, and yet Multiprecision's range analysis allows it to automatically drop out special cases such as multiplication by 5 being much easier than multiplication by another multi-word integer.
2015-12-16 14:12:26 +00:00
for (i = len-1; i >= 0; i--)
BignumADC(c[i], carry, a[i], ~b[i], carry);
}
/*
* Compute c = a * b.
* Input is in the first len words of a and b.
* Result is returned in the first 2*len words of c.
*
* 'scratch' must point to an array of BignumInt of size at least
* mul_compute_scratch(len). (This covers the needs of internal_mul
* and all its recursive calls to itself.)
*/
#define KARATSUBA_THRESHOLD 50
static int mul_compute_scratch(int len)
{
int ret = 0;
while (len > KARATSUBA_THRESHOLD) {
int toplen = len/2, botlen = len - toplen; /* botlen is the bigger */
int midlen = botlen + 1;
ret += 4*midlen;
len = midlen;
}
return ret;
}
static void internal_mul(const BignumInt *a, const BignumInt *b,
BignumInt *c, int len, BignumInt *scratch)
{
if (len > KARATSUBA_THRESHOLD) {
int i;
/*
* Karatsuba divide-and-conquer algorithm. Cut each input in
* half, so that it's expressed as two big 'digits' in a giant
* base D:
*
* a = a_1 D + a_0
* b = b_1 D + b_0
*
* Then the product is of course
*
* ab = a_1 b_1 D^2 + (a_1 b_0 + a_0 b_1) D + a_0 b_0
*
* and we compute the three coefficients by recursively
* calling ourself to do half-length multiplications.
*
* The clever bit that makes this worth doing is that we only
* need _one_ half-length multiplication for the central
* coefficient rather than the two that it obviouly looks
* like, because we can use a single multiplication to compute
*
* (a_1 + a_0) (b_1 + b_0) = a_1 b_1 + a_1 b_0 + a_0 b_1 + a_0 b_0
*
* and then we subtract the other two coefficients (a_1 b_1
* and a_0 b_0) which we were computing anyway.
*
* Hence we get to multiply two numbers of length N in about
* three times as much work as it takes to multiply numbers of
* length N/2, which is obviously better than the four times
* as much work it would take if we just did a long
* conventional multiply.
*/
int toplen = len/2, botlen = len - toplen; /* botlen is the bigger */
int midlen = botlen + 1;
Relegate BignumDblInt to an implementation detail of sshbn.h. As I mentioned in the previous commit, I'm going to want PuTTY to be able to run sensibly when compiled with 64-bit Visual Studio, including handling bignums in 64-bit chunks for speed. Unfortunately, 64-bit VS does not provide any type we can use as BignumDblInt in that situation (unlike 64-bit gcc and clang, which give us __uint128_t). The only facilities it provides are compiler intrinsics to access an add-with-carry operation and a 64x64->128 multiplication (the latter delivering its product in two separate 64-bit output chunks). Hence, here's a substantial rework of the bignum code to make it implement everything in terms of _those_ primitives, rather than depending throughout on having BignumDblInt available to use ad-hoc. BignumDblInt does still exist, for the moment, but now it's an internal implementation detail of sshbn.h, only declared inside a new set of macros implementing arithmetic primitives, and not accessible to any code outside sshbn.h (which confirms that I really did catch all uses of it and remove them). The resulting code is surprisingly nice-looking, actually. You'd expect more hassle and roundabout circumlocutions when you drop down to using a more basic set of primitive operations, but actually, in many cases it's turned out shorter to write things in terms of the new BignumADC and BignumMUL macros - because almost all my uses of BignumDblInt were implementing those operations anyway, taking several lines at a time, and now they can do each thing in just one line. The biggest headache was Poly1305: I wasn't able to find any sensible way to adapt the existing Python script that generates the various per-int-size implementations of arithmetic mod 2^130-5, and so I had to rewrite it from scratch instead, with nothing in common with the old version beyond a handful of comments. But even that seems to have worked out nicely: the new version has much more legible descriptions of the high-level algorithms, by virtue of having a 'Multiprecision' type which wraps up the division into words, and yet Multiprecision's range analysis allows it to automatically drop out special cases such as multiplication by 5 being much easier than multiplication by another multi-word integer.
2015-12-16 14:12:26 +00:00
BignumCarry carry;
#ifdef KARA_DEBUG
int i;
#endif
/*
* The coefficients a_1 b_1 and a_0 b_0 just avoid overlapping
* in the output array, so we can compute them immediately in
* place.
*/
#ifdef KARA_DEBUG
printf("a1,a0 = 0x");
for (i = 0; i < len; i++) {
if (i == toplen) printf(", 0x");
printf("%0*x", BIGNUM_INT_BITS/4, a[i]);
}
printf("\n");
printf("b1,b0 = 0x");
for (i = 0; i < len; i++) {
if (i == toplen) printf(", 0x");
printf("%0*x", BIGNUM_INT_BITS/4, b[i]);
}
printf("\n");
#endif
/* a_1 b_1 */
internal_mul(a, b, c, toplen, scratch);
#ifdef KARA_DEBUG
printf("a1b1 = 0x");
for (i = 0; i < 2*toplen; i++) {
printf("%0*x", BIGNUM_INT_BITS/4, c[i]);
}
printf("\n");
#endif
/* a_0 b_0 */
internal_mul(a + toplen, b + toplen, c + 2*toplen, botlen, scratch);
#ifdef KARA_DEBUG
printf("a0b0 = 0x");
for (i = 0; i < 2*botlen; i++) {
printf("%0*x", BIGNUM_INT_BITS/4, c[2*toplen+i]);
}
printf("\n");
#endif
/* Zero padding. midlen exceeds toplen by at most 2, so just
* zero the first two words of each input and the rest will be
* copied over. */
scratch[0] = scratch[1] = scratch[midlen] = scratch[midlen+1] = 0;
for (i = 0; i < toplen; i++) {
scratch[midlen - toplen + i] = a[i]; /* a_1 */
scratch[2*midlen - toplen + i] = b[i]; /* b_1 */
}
/* compute a_1 + a_0 */
scratch[0] = internal_add(scratch+1, a+toplen, scratch+1, botlen);
#ifdef KARA_DEBUG
printf("a1plusa0 = 0x");
for (i = 0; i < midlen; i++) {
printf("%0*x", BIGNUM_INT_BITS/4, scratch[i]);
}
printf("\n");
#endif
/* compute b_1 + b_0 */
scratch[midlen] = internal_add(scratch+midlen+1, b+toplen,
scratch+midlen+1, botlen);
#ifdef KARA_DEBUG
printf("b1plusb0 = 0x");
for (i = 0; i < midlen; i++) {
printf("%0*x", BIGNUM_INT_BITS/4, scratch[midlen+i]);
}
printf("\n");
#endif
/*
* Now we can do the third multiplication.
*/
internal_mul(scratch, scratch + midlen, scratch + 2*midlen, midlen,
scratch + 4*midlen);
#ifdef KARA_DEBUG
printf("a1plusa0timesb1plusb0 = 0x");
for (i = 0; i < 2*midlen; i++) {
printf("%0*x", BIGNUM_INT_BITS/4, scratch[2*midlen+i]);
}
printf("\n");
#endif
/*
* Now we can reuse the first half of 'scratch' to compute the
* sum of the outer two coefficients, to subtract from that
* product to obtain the middle one.
*/
scratch[0] = scratch[1] = scratch[2] = scratch[3] = 0;
for (i = 0; i < 2*toplen; i++)
scratch[2*midlen - 2*toplen + i] = c[i];
scratch[1] = internal_add(scratch+2, c + 2*toplen,
scratch+2, 2*botlen);
#ifdef KARA_DEBUG
printf("a1b1plusa0b0 = 0x");
for (i = 0; i < 2*midlen; i++) {
printf("%0*x", BIGNUM_INT_BITS/4, scratch[i]);
}
printf("\n");
#endif
internal_sub(scratch + 2*midlen, scratch,
scratch + 2*midlen, 2*midlen);
#ifdef KARA_DEBUG
printf("a1b0plusa0b1 = 0x");
for (i = 0; i < 2*midlen; i++) {
printf("%0*x", BIGNUM_INT_BITS/4, scratch[2*midlen+i]);
}
printf("\n");
#endif
/*
* And now all we need to do is to add that middle coefficient
* back into the output. We may have to propagate a carry
* further up the output, but we can be sure it won't
* propagate right the way off the top.
*/
carry = internal_add(c + 2*len - botlen - 2*midlen,
scratch + 2*midlen,
c + 2*len - botlen - 2*midlen, 2*midlen);
i = 2*len - botlen - 2*midlen - 1;
while (carry) {
assert(i >= 0);
Relegate BignumDblInt to an implementation detail of sshbn.h. As I mentioned in the previous commit, I'm going to want PuTTY to be able to run sensibly when compiled with 64-bit Visual Studio, including handling bignums in 64-bit chunks for speed. Unfortunately, 64-bit VS does not provide any type we can use as BignumDblInt in that situation (unlike 64-bit gcc and clang, which give us __uint128_t). The only facilities it provides are compiler intrinsics to access an add-with-carry operation and a 64x64->128 multiplication (the latter delivering its product in two separate 64-bit output chunks). Hence, here's a substantial rework of the bignum code to make it implement everything in terms of _those_ primitives, rather than depending throughout on having BignumDblInt available to use ad-hoc. BignumDblInt does still exist, for the moment, but now it's an internal implementation detail of sshbn.h, only declared inside a new set of macros implementing arithmetic primitives, and not accessible to any code outside sshbn.h (which confirms that I really did catch all uses of it and remove them). The resulting code is surprisingly nice-looking, actually. You'd expect more hassle and roundabout circumlocutions when you drop down to using a more basic set of primitive operations, but actually, in many cases it's turned out shorter to write things in terms of the new BignumADC and BignumMUL macros - because almost all my uses of BignumDblInt were implementing those operations anyway, taking several lines at a time, and now they can do each thing in just one line. The biggest headache was Poly1305: I wasn't able to find any sensible way to adapt the existing Python script that generates the various per-int-size implementations of arithmetic mod 2^130-5, and so I had to rewrite it from scratch instead, with nothing in common with the old version beyond a handful of comments. But even that seems to have worked out nicely: the new version has much more legible descriptions of the high-level algorithms, by virtue of having a 'Multiprecision' type which wraps up the division into words, and yet Multiprecision's range analysis allows it to automatically drop out special cases such as multiplication by 5 being much easier than multiplication by another multi-word integer.
2015-12-16 14:12:26 +00:00
BignumADC(c[i], carry, c[i], 0, carry);
i--;
}
#ifdef KARA_DEBUG
printf("ab = 0x");
for (i = 0; i < 2*len; i++) {
printf("%0*x", BIGNUM_INT_BITS/4, c[i]);
}
printf("\n");
#endif
} else {
int i;
BignumInt carry;
const BignumInt *ap, *bp;
BignumInt *cp, *cps;
/*
* Multiply in the ordinary O(N^2) way.
*/
for (i = 0; i < 2 * len; i++)
c[i] = 0;
for (cps = c + 2*len, ap = a + len; ap-- > a; cps--) {
carry = 0;
Relegate BignumDblInt to an implementation detail of sshbn.h. As I mentioned in the previous commit, I'm going to want PuTTY to be able to run sensibly when compiled with 64-bit Visual Studio, including handling bignums in 64-bit chunks for speed. Unfortunately, 64-bit VS does not provide any type we can use as BignumDblInt in that situation (unlike 64-bit gcc and clang, which give us __uint128_t). The only facilities it provides are compiler intrinsics to access an add-with-carry operation and a 64x64->128 multiplication (the latter delivering its product in two separate 64-bit output chunks). Hence, here's a substantial rework of the bignum code to make it implement everything in terms of _those_ primitives, rather than depending throughout on having BignumDblInt available to use ad-hoc. BignumDblInt does still exist, for the moment, but now it's an internal implementation detail of sshbn.h, only declared inside a new set of macros implementing arithmetic primitives, and not accessible to any code outside sshbn.h (which confirms that I really did catch all uses of it and remove them). The resulting code is surprisingly nice-looking, actually. You'd expect more hassle and roundabout circumlocutions when you drop down to using a more basic set of primitive operations, but actually, in many cases it's turned out shorter to write things in terms of the new BignumADC and BignumMUL macros - because almost all my uses of BignumDblInt were implementing those operations anyway, taking several lines at a time, and now they can do each thing in just one line. The biggest headache was Poly1305: I wasn't able to find any sensible way to adapt the existing Python script that generates the various per-int-size implementations of arithmetic mod 2^130-5, and so I had to rewrite it from scratch instead, with nothing in common with the old version beyond a handful of comments. But even that seems to have worked out nicely: the new version has much more legible descriptions of the high-level algorithms, by virtue of having a 'Multiprecision' type which wraps up the division into words, and yet Multiprecision's range analysis allows it to automatically drop out special cases such as multiplication by 5 being much easier than multiplication by another multi-word integer.
2015-12-16 14:12:26 +00:00
for (cp = cps, bp = b + len; cp--, bp-- > b ;)
BignumMULADD2(carry, *cp, *ap, *bp, *cp, carry);
*cp = carry;
}
}
}
/*
* Variant form of internal_mul used for the initial step of
* Montgomery reduction. Only bothers outputting 'len' words
* (everything above that is thrown away).
*/
static void internal_mul_low(const BignumInt *a, const BignumInt *b,
BignumInt *c, int len, BignumInt *scratch)
{
if (len > KARATSUBA_THRESHOLD) {
int i;
/*
* Karatsuba-aware version of internal_mul_low. As before, we
* express each input value as a shifted combination of two
* halves:
*
* a = a_1 D + a_0
* b = b_1 D + b_0
*
* Then the full product is, as before,
*
* ab = a_1 b_1 D^2 + (a_1 b_0 + a_0 b_1) D + a_0 b_0
*
* Provided we choose D on the large side (so that a_0 and b_0
* are _at least_ as long as a_1 and b_1), we don't need the
* topmost term at all, and we only need half of the middle
* term. So there's no point in doing the proper Karatsuba
* optimisation which computes the middle term using the top
* one, because we'd take as long computing the top one as
* just computing the middle one directly.
*
* So instead, we do a much more obvious thing: we call the
* fully optimised internal_mul to compute a_0 b_0, and we
* recursively call ourself to compute the _bottom halves_ of
* a_1 b_0 and a_0 b_1, each of which we add into the result
* in the obvious way.
*
* In other words, there's no actual Karatsuba _optimisation_
* in this function; the only benefit in doing it this way is
* that we call internal_mul proper for a large part of the
* work, and _that_ can optimise its operation.
*/
int toplen = len/2, botlen = len - toplen; /* botlen is the bigger */
/*
* Scratch space for the various bits and pieces we're going
* to be adding together: we need botlen*2 words for a_0 b_0
* (though we may end up throwing away its topmost word), and
* toplen words for each of a_1 b_0 and a_0 b_1. That adds up
* to exactly 2*len.
*/
/* a_0 b_0 */
internal_mul(a + toplen, b + toplen, scratch + 2*toplen, botlen,
scratch + 2*len);
/* a_1 b_0 */
internal_mul_low(a, b + len - toplen, scratch + toplen, toplen,
scratch + 2*len);
/* a_0 b_1 */
internal_mul_low(a + len - toplen, b, scratch, toplen,
scratch + 2*len);
/* Copy the bottom half of the big coefficient into place */
for (i = 0; i < botlen; i++)
c[toplen + i] = scratch[2*toplen + botlen + i];
/* Add the two small coefficients, throwing away the returned carry */
internal_add(scratch, scratch + toplen, scratch, toplen);
/* And add that to the large coefficient, leaving the result in c. */
internal_add(scratch, scratch + 2*toplen + botlen - toplen,
c, toplen);
} else {
int i;
BignumInt carry;
const BignumInt *ap, *bp;
BignumInt *cp, *cps;
/*
* Multiply in the ordinary O(N^2) way.
*/
for (i = 0; i < len; i++)
c[i] = 0;
for (cps = c + len, ap = a + len; ap-- > a; cps--) {
carry = 0;
Relegate BignumDblInt to an implementation detail of sshbn.h. As I mentioned in the previous commit, I'm going to want PuTTY to be able to run sensibly when compiled with 64-bit Visual Studio, including handling bignums in 64-bit chunks for speed. Unfortunately, 64-bit VS does not provide any type we can use as BignumDblInt in that situation (unlike 64-bit gcc and clang, which give us __uint128_t). The only facilities it provides are compiler intrinsics to access an add-with-carry operation and a 64x64->128 multiplication (the latter delivering its product in two separate 64-bit output chunks). Hence, here's a substantial rework of the bignum code to make it implement everything in terms of _those_ primitives, rather than depending throughout on having BignumDblInt available to use ad-hoc. BignumDblInt does still exist, for the moment, but now it's an internal implementation detail of sshbn.h, only declared inside a new set of macros implementing arithmetic primitives, and not accessible to any code outside sshbn.h (which confirms that I really did catch all uses of it and remove them). The resulting code is surprisingly nice-looking, actually. You'd expect more hassle and roundabout circumlocutions when you drop down to using a more basic set of primitive operations, but actually, in many cases it's turned out shorter to write things in terms of the new BignumADC and BignumMUL macros - because almost all my uses of BignumDblInt were implementing those operations anyway, taking several lines at a time, and now they can do each thing in just one line. The biggest headache was Poly1305: I wasn't able to find any sensible way to adapt the existing Python script that generates the various per-int-size implementations of arithmetic mod 2^130-5, and so I had to rewrite it from scratch instead, with nothing in common with the old version beyond a handful of comments. But even that seems to have worked out nicely: the new version has much more legible descriptions of the high-level algorithms, by virtue of having a 'Multiprecision' type which wraps up the division into words, and yet Multiprecision's range analysis allows it to automatically drop out special cases such as multiplication by 5 being much easier than multiplication by another multi-word integer.
2015-12-16 14:12:26 +00:00
for (cp = cps, bp = b + len; bp--, cp-- > c ;)
BignumMULADD2(carry, *cp, *ap, *bp, *cp, carry);
}
}
}
/*
* Montgomery reduction. Expects x to be a big-endian array of 2*len
* BignumInts whose value satisfies 0 <= x < rn (where r = 2^(len *
* BIGNUM_INT_BITS) is the Montgomery base). Returns in the same array
* a value x' which is congruent to xr^{-1} mod n, and satisfies 0 <=
* x' < n.
*
* 'n' and 'mninv' should be big-endian arrays of 'len' BignumInts
* each, containing respectively n and the multiplicative inverse of
* -n mod r.
*
* 'tmp' is an array of BignumInt used as scratch space, of length at
* least 3*len + mul_compute_scratch(len).
*/
static void monty_reduce(BignumInt *x, const BignumInt *n,
const BignumInt *mninv, BignumInt *tmp, int len)
{
int i;
BignumInt carry;
/*
* Multiply x by (-n)^{-1} mod r. This gives us a value m such
* that mn is congruent to -x mod r. Hence, mn+x is an exact
* multiple of r, and is also (obviously) congruent to x mod n.
*/
internal_mul_low(x + len, mninv, tmp, len, tmp + 3*len);
/*
* Compute t = (mn+x)/r in ordinary, non-modular, integer
* arithmetic. By construction this is exact, and is congruent mod
* n to x * r^{-1}, i.e. the answer we want.
*
* The following multiply leaves that answer in the _most_
* significant half of the 'x' array, so then we must shift it
* down.
*/
internal_mul(tmp, n, tmp+len, len, tmp + 3*len);
carry = internal_add(x, tmp+len, x, 2*len);
for (i = 0; i < len; i++)
x[len + i] = x[i], x[i] = 0;
/*
* Reduce t mod n. This doesn't require a full-on division by n,
* but merely a test and single optional subtraction, since we can
* show that 0 <= t < 2n.
*
* Proof:
* + we computed m mod r, so 0 <= m < r.
* + so 0 <= mn < rn, obviously
* + hence we only need 0 <= x < rn to guarantee that 0 <= mn+x < 2rn
* + yielding 0 <= (mn+x)/r < 2n as required.
*/
if (!carry) {
for (i = 0; i < len; i++)
if (x[len + i] != n[i])
break;
}
if (carry || i >= len || x[len + i] > n[i])
internal_sub(x+len, n, x+len, len);
}
static void internal_add_shifted(BignumInt *number,
BignumInt n, int shift)
{
int word = 1 + (shift / BIGNUM_INT_BITS);
int bshift = shift % BIGNUM_INT_BITS;
Relegate BignumDblInt to an implementation detail of sshbn.h. As I mentioned in the previous commit, I'm going to want PuTTY to be able to run sensibly when compiled with 64-bit Visual Studio, including handling bignums in 64-bit chunks for speed. Unfortunately, 64-bit VS does not provide any type we can use as BignumDblInt in that situation (unlike 64-bit gcc and clang, which give us __uint128_t). The only facilities it provides are compiler intrinsics to access an add-with-carry operation and a 64x64->128 multiplication (the latter delivering its product in two separate 64-bit output chunks). Hence, here's a substantial rework of the bignum code to make it implement everything in terms of _those_ primitives, rather than depending throughout on having BignumDblInt available to use ad-hoc. BignumDblInt does still exist, for the moment, but now it's an internal implementation detail of sshbn.h, only declared inside a new set of macros implementing arithmetic primitives, and not accessible to any code outside sshbn.h (which confirms that I really did catch all uses of it and remove them). The resulting code is surprisingly nice-looking, actually. You'd expect more hassle and roundabout circumlocutions when you drop down to using a more basic set of primitive operations, but actually, in many cases it's turned out shorter to write things in terms of the new BignumADC and BignumMUL macros - because almost all my uses of BignumDblInt were implementing those operations anyway, taking several lines at a time, and now they can do each thing in just one line. The biggest headache was Poly1305: I wasn't able to find any sensible way to adapt the existing Python script that generates the various per-int-size implementations of arithmetic mod 2^130-5, and so I had to rewrite it from scratch instead, with nothing in common with the old version beyond a handful of comments. But even that seems to have worked out nicely: the new version has much more legible descriptions of the high-level algorithms, by virtue of having a 'Multiprecision' type which wraps up the division into words, and yet Multiprecision's range analysis allows it to automatically drop out special cases such as multiplication by 5 being much easier than multiplication by another multi-word integer.
2015-12-16 14:12:26 +00:00
BignumInt addendh, addendl;
BignumCarry carry;
addendl = n << bshift;
addendh = (bshift == 0 ? 0 : n >> (BIGNUM_INT_BITS - bshift));
assert(word <= number[0]);
BignumADC(number[word], carry, number[word], addendl, 0);
word++;
if (!addendh && !carry)
return;
assert(word <= number[0]);
BignumADC(number[word], carry, number[word], addendh, carry);
word++;
while (carry) {
assert(word <= number[0]);
Relegate BignumDblInt to an implementation detail of sshbn.h. As I mentioned in the previous commit, I'm going to want PuTTY to be able to run sensibly when compiled with 64-bit Visual Studio, including handling bignums in 64-bit chunks for speed. Unfortunately, 64-bit VS does not provide any type we can use as BignumDblInt in that situation (unlike 64-bit gcc and clang, which give us __uint128_t). The only facilities it provides are compiler intrinsics to access an add-with-carry operation and a 64x64->128 multiplication (the latter delivering its product in two separate 64-bit output chunks). Hence, here's a substantial rework of the bignum code to make it implement everything in terms of _those_ primitives, rather than depending throughout on having BignumDblInt available to use ad-hoc. BignumDblInt does still exist, for the moment, but now it's an internal implementation detail of sshbn.h, only declared inside a new set of macros implementing arithmetic primitives, and not accessible to any code outside sshbn.h (which confirms that I really did catch all uses of it and remove them). The resulting code is surprisingly nice-looking, actually. You'd expect more hassle and roundabout circumlocutions when you drop down to using a more basic set of primitive operations, but actually, in many cases it's turned out shorter to write things in terms of the new BignumADC and BignumMUL macros - because almost all my uses of BignumDblInt were implementing those operations anyway, taking several lines at a time, and now they can do each thing in just one line. The biggest headache was Poly1305: I wasn't able to find any sensible way to adapt the existing Python script that generates the various per-int-size implementations of arithmetic mod 2^130-5, and so I had to rewrite it from scratch instead, with nothing in common with the old version beyond a handful of comments. But even that seems to have worked out nicely: the new version has much more legible descriptions of the high-level algorithms, by virtue of having a 'Multiprecision' type which wraps up the division into words, and yet Multiprecision's range analysis allows it to automatically drop out special cases such as multiplication by 5 being much easier than multiplication by another multi-word integer.
2015-12-16 14:12:26 +00:00
BignumADC(number[word], carry, number[word], 0, carry);
word++;
}
}
Rewrite the core divide function to not use DIVMOD_WORD. DIVMOD_WORD is a portability hazard, because implementing it requires either a way to get direct access to the x86 DIV instruction or equivalent (be it inline assembler or a compiler intrinsic), or else an integer type we can use as BignumDblInt. But I'm starting to think about porting to 64-bit Visual Studio with a 64-bit BignumInt, and in that situation neither of those options will be available. I could write a piece of _out_-of-line x86-64 assembler in a separate source file and put a function call in DIVMOD_WORD, but instead I've decided to solve the problem in a more futureproof way: remove DIVMOD_WORD totally and write a division function that doesn't need it at all, solving not only today's porting headache but all future ones in this area. The new implementation works by precomputing (a good enough approximation to) the leading word of the reciprocal of the modulus, and then getting each word of quotient by multiplying by that reciprocal, where we previously used DIVMOD_WORD to divide by the leading word of the actual modulus. The reciprocal itself is computed outside internal_mod() and passed in as a parameter, allowing me to save time by only computing it once when I'm about to do a modpow. To some extent this complicates the implementation: the advantage of DIVMOD_WORD was that it yielded a full word q of quotient every time it was used, so the subtraction of q*m from the input could be done in a nicely word-aligned way. But the reciprocal multiply approach yields _almost_ a full word of quotient, because you have to make the reciprocal a bit short to avoid overflow at multiplication time. For a start, this means we have to do fractionally more iterations of the main loop; but more painfully, we can no longer depend on the subtraction of q*m at every step being word-aligned, and instead we have to be prepared to do it at any bit shift. But the flip side is that once we've implemented that, the rest of the algorithm becomes a lot less full of horrible special cases: in particular, we can now completely throw away the horribleness at all the call sites where we shift the modulus up by a fractional word to set its top bit, and then have to do a little dance to get the last few bits of quotient involving a second call to internal_mod. So there are points both for and against the new implementation in simplicity terms; but I think on balance it's more comprehensible than the old one, and a quick timing test suggests it also ends up a touch faster overall - the new testbn gets through the output of testdata/bignum.py in 4.034s where the old one took 4.392s.
2015-12-13 14:46:43 +00:00
static int bn_clz(BignumInt x)
{
/*
* Count the leading zero bits in x. Equivalently, how far left
* would we need to shift x to make its top bit set?
*
* Precondition: x != 0.
*/
/* FIXME: would be nice to put in some compiler intrinsics under
* ifdef here */
int i, ret = 0;
for (i = BIGNUM_INT_BITS / 2; i != 0; i >>= 1) {
if ((x >> (BIGNUM_INT_BITS-i)) == 0) {
x <<= i;
ret += i;
}
}
return ret;
}
static BignumInt reciprocal_word(BignumInt d)
{
Relegate BignumDblInt to an implementation detail of sshbn.h. As I mentioned in the previous commit, I'm going to want PuTTY to be able to run sensibly when compiled with 64-bit Visual Studio, including handling bignums in 64-bit chunks for speed. Unfortunately, 64-bit VS does not provide any type we can use as BignumDblInt in that situation (unlike 64-bit gcc and clang, which give us __uint128_t). The only facilities it provides are compiler intrinsics to access an add-with-carry operation and a 64x64->128 multiplication (the latter delivering its product in two separate 64-bit output chunks). Hence, here's a substantial rework of the bignum code to make it implement everything in terms of _those_ primitives, rather than depending throughout on having BignumDblInt available to use ad-hoc. BignumDblInt does still exist, for the moment, but now it's an internal implementation detail of sshbn.h, only declared inside a new set of macros implementing arithmetic primitives, and not accessible to any code outside sshbn.h (which confirms that I really did catch all uses of it and remove them). The resulting code is surprisingly nice-looking, actually. You'd expect more hassle and roundabout circumlocutions when you drop down to using a more basic set of primitive operations, but actually, in many cases it's turned out shorter to write things in terms of the new BignumADC and BignumMUL macros - because almost all my uses of BignumDblInt were implementing those operations anyway, taking several lines at a time, and now they can do each thing in just one line. The biggest headache was Poly1305: I wasn't able to find any sensible way to adapt the existing Python script that generates the various per-int-size implementations of arithmetic mod 2^130-5, and so I had to rewrite it from scratch instead, with nothing in common with the old version beyond a handful of comments. But even that seems to have worked out nicely: the new version has much more legible descriptions of the high-level algorithms, by virtue of having a 'Multiprecision' type which wraps up the division into words, and yet Multiprecision's range analysis allows it to automatically drop out special cases such as multiplication by 5 being much easier than multiplication by another multi-word integer.
2015-12-16 14:12:26 +00:00
BignumInt dshort, recip, prodh, prodl;
Rewrite the core divide function to not use DIVMOD_WORD. DIVMOD_WORD is a portability hazard, because implementing it requires either a way to get direct access to the x86 DIV instruction or equivalent (be it inline assembler or a compiler intrinsic), or else an integer type we can use as BignumDblInt. But I'm starting to think about porting to 64-bit Visual Studio with a 64-bit BignumInt, and in that situation neither of those options will be available. I could write a piece of _out_-of-line x86-64 assembler in a separate source file and put a function call in DIVMOD_WORD, but instead I've decided to solve the problem in a more futureproof way: remove DIVMOD_WORD totally and write a division function that doesn't need it at all, solving not only today's porting headache but all future ones in this area. The new implementation works by precomputing (a good enough approximation to) the leading word of the reciprocal of the modulus, and then getting each word of quotient by multiplying by that reciprocal, where we previously used DIVMOD_WORD to divide by the leading word of the actual modulus. The reciprocal itself is computed outside internal_mod() and passed in as a parameter, allowing me to save time by only computing it once when I'm about to do a modpow. To some extent this complicates the implementation: the advantage of DIVMOD_WORD was that it yielded a full word q of quotient every time it was used, so the subtraction of q*m from the input could be done in a nicely word-aligned way. But the reciprocal multiply approach yields _almost_ a full word of quotient, because you have to make the reciprocal a bit short to avoid overflow at multiplication time. For a start, this means we have to do fractionally more iterations of the main loop; but more painfully, we can no longer depend on the subtraction of q*m at every step being word-aligned, and instead we have to be prepared to do it at any bit shift. But the flip side is that once we've implemented that, the rest of the algorithm becomes a lot less full of horrible special cases: in particular, we can now completely throw away the horribleness at all the call sites where we shift the modulus up by a fractional word to set its top bit, and then have to do a little dance to get the last few bits of quotient involving a second call to internal_mod. So there are points both for and against the new implementation in simplicity terms; but I think on balance it's more comprehensible than the old one, and a quick timing test suggests it also ends up a touch faster overall - the new testbn gets through the output of testdata/bignum.py in 4.034s where the old one took 4.392s.
2015-12-13 14:46:43 +00:00
int corrections;
/*
* Input: a BignumInt value d, with its top bit set.
*/
assert(d >> (BIGNUM_INT_BITS-1) == 1);
/*
* Output: a value, shifted to fill a BignumInt, which is strictly
* less than 1/(d+1), i.e. is an *under*-estimate (but by as
* little as possible within the constraints) of the reciprocal of
* any number whose first BIGNUM_INT_BITS bits match d.
*
* Ideally we'd like to _totally_ fill BignumInt, i.e. always
* return a value with the top bit set. Unfortunately we can't
* quite guarantee that for all inputs and also return a fixed
* exponent. So instead we take our reciprocal to be
* 2^(BIGNUM_INT_BITS*2-1) / d, so that it has the top bit clear
* only in the exceptional case where d takes exactly the maximum
* value BIGNUM_INT_MASK; in that case, the top bit is clear and
* the next bit down is set.
*/
/*
* Start by computing a half-length version of the answer, by
* straightforward division within a BignumInt.
*/
dshort = (d >> (BIGNUM_INT_BITS/2)) + 1;
recip = (BIGNUM_TOP_BIT + dshort - 1) / dshort;
recip <<= BIGNUM_INT_BITS - BIGNUM_INT_BITS/2;
/*
* Newton-Raphson iteration to improve that starting reciprocal
* estimate: take f(x) = d - 1/x, and then the N-R formula gives
* x_new = x - f(x)/f'(x) = x - (d-1/x)/(1/x^2) = x(2-d*x). Or,
* taking our fixed-point representation into account, take f(x)
* to be d - K/x (where K = 2^(BIGNUM_INT_BITS*2-1) as discussed
* above) and then we get (2K - d*x) * x/K.
*
* Newton-Raphson doubles the number of correct bits at every
* iteration, and the initial division above already gave us half
* the output word, so it's only worth doing one iteration.
*/
Relegate BignumDblInt to an implementation detail of sshbn.h. As I mentioned in the previous commit, I'm going to want PuTTY to be able to run sensibly when compiled with 64-bit Visual Studio, including handling bignums in 64-bit chunks for speed. Unfortunately, 64-bit VS does not provide any type we can use as BignumDblInt in that situation (unlike 64-bit gcc and clang, which give us __uint128_t). The only facilities it provides are compiler intrinsics to access an add-with-carry operation and a 64x64->128 multiplication (the latter delivering its product in two separate 64-bit output chunks). Hence, here's a substantial rework of the bignum code to make it implement everything in terms of _those_ primitives, rather than depending throughout on having BignumDblInt available to use ad-hoc. BignumDblInt does still exist, for the moment, but now it's an internal implementation detail of sshbn.h, only declared inside a new set of macros implementing arithmetic primitives, and not accessible to any code outside sshbn.h (which confirms that I really did catch all uses of it and remove them). The resulting code is surprisingly nice-looking, actually. You'd expect more hassle and roundabout circumlocutions when you drop down to using a more basic set of primitive operations, but actually, in many cases it's turned out shorter to write things in terms of the new BignumADC and BignumMUL macros - because almost all my uses of BignumDblInt were implementing those operations anyway, taking several lines at a time, and now they can do each thing in just one line. The biggest headache was Poly1305: I wasn't able to find any sensible way to adapt the existing Python script that generates the various per-int-size implementations of arithmetic mod 2^130-5, and so I had to rewrite it from scratch instead, with nothing in common with the old version beyond a handful of comments. But even that seems to have worked out nicely: the new version has much more legible descriptions of the high-level algorithms, by virtue of having a 'Multiprecision' type which wraps up the division into words, and yet Multiprecision's range analysis allows it to automatically drop out special cases such as multiplication by 5 being much easier than multiplication by another multi-word integer.
2015-12-16 14:12:26 +00:00
BignumMULADD(prodh, prodl, recip, d, recip);
prodl = ~prodl;
prodh = ~prodh;
{
BignumCarry c;
BignumADC(prodl, c, prodl, 1, 0);
prodh += c;
}
BignumMUL(prodh, prodl, prodh, recip);
recip = (prodh << 1) | (prodl >> (BIGNUM_INT_BITS-1));
Rewrite the core divide function to not use DIVMOD_WORD. DIVMOD_WORD is a portability hazard, because implementing it requires either a way to get direct access to the x86 DIV instruction or equivalent (be it inline assembler or a compiler intrinsic), or else an integer type we can use as BignumDblInt. But I'm starting to think about porting to 64-bit Visual Studio with a 64-bit BignumInt, and in that situation neither of those options will be available. I could write a piece of _out_-of-line x86-64 assembler in a separate source file and put a function call in DIVMOD_WORD, but instead I've decided to solve the problem in a more futureproof way: remove DIVMOD_WORD totally and write a division function that doesn't need it at all, solving not only today's porting headache but all future ones in this area. The new implementation works by precomputing (a good enough approximation to) the leading word of the reciprocal of the modulus, and then getting each word of quotient by multiplying by that reciprocal, where we previously used DIVMOD_WORD to divide by the leading word of the actual modulus. The reciprocal itself is computed outside internal_mod() and passed in as a parameter, allowing me to save time by only computing it once when I'm about to do a modpow. To some extent this complicates the implementation: the advantage of DIVMOD_WORD was that it yielded a full word q of quotient every time it was used, so the subtraction of q*m from the input could be done in a nicely word-aligned way. But the reciprocal multiply approach yields _almost_ a full word of quotient, because you have to make the reciprocal a bit short to avoid overflow at multiplication time. For a start, this means we have to do fractionally more iterations of the main loop; but more painfully, we can no longer depend on the subtraction of q*m at every step being word-aligned, and instead we have to be prepared to do it at any bit shift. But the flip side is that once we've implemented that, the rest of the algorithm becomes a lot less full of horrible special cases: in particular, we can now completely throw away the horribleness at all the call sites where we shift the modulus up by a fractional word to set its top bit, and then have to do a little dance to get the last few bits of quotient involving a second call to internal_mod. So there are points both for and against the new implementation in simplicity terms; but I think on balance it's more comprehensible than the old one, and a quick timing test suggests it also ends up a touch faster overall - the new testbn gets through the output of testdata/bignum.py in 4.034s where the old one took 4.392s.
2015-12-13 14:46:43 +00:00
/*
* Now make sure we have the best possible reciprocal estimate,
* before we return it. We might have been off by a handful either
* way - not enough to bother with any better-thought-out kind of
* correction loop.
*/
Relegate BignumDblInt to an implementation detail of sshbn.h. As I mentioned in the previous commit, I'm going to want PuTTY to be able to run sensibly when compiled with 64-bit Visual Studio, including handling bignums in 64-bit chunks for speed. Unfortunately, 64-bit VS does not provide any type we can use as BignumDblInt in that situation (unlike 64-bit gcc and clang, which give us __uint128_t). The only facilities it provides are compiler intrinsics to access an add-with-carry operation and a 64x64->128 multiplication (the latter delivering its product in two separate 64-bit output chunks). Hence, here's a substantial rework of the bignum code to make it implement everything in terms of _those_ primitives, rather than depending throughout on having BignumDblInt available to use ad-hoc. BignumDblInt does still exist, for the moment, but now it's an internal implementation detail of sshbn.h, only declared inside a new set of macros implementing arithmetic primitives, and not accessible to any code outside sshbn.h (which confirms that I really did catch all uses of it and remove them). The resulting code is surprisingly nice-looking, actually. You'd expect more hassle and roundabout circumlocutions when you drop down to using a more basic set of primitive operations, but actually, in many cases it's turned out shorter to write things in terms of the new BignumADC and BignumMUL macros - because almost all my uses of BignumDblInt were implementing those operations anyway, taking several lines at a time, and now they can do each thing in just one line. The biggest headache was Poly1305: I wasn't able to find any sensible way to adapt the existing Python script that generates the various per-int-size implementations of arithmetic mod 2^130-5, and so I had to rewrite it from scratch instead, with nothing in common with the old version beyond a handful of comments. But even that seems to have worked out nicely: the new version has much more legible descriptions of the high-level algorithms, by virtue of having a 'Multiprecision' type which wraps up the division into words, and yet Multiprecision's range analysis allows it to automatically drop out special cases such as multiplication by 5 being much easier than multiplication by another multi-word integer.
2015-12-16 14:12:26 +00:00
BignumMULADD(prodh, prodl, recip, d, recip);
Rewrite the core divide function to not use DIVMOD_WORD. DIVMOD_WORD is a portability hazard, because implementing it requires either a way to get direct access to the x86 DIV instruction or equivalent (be it inline assembler or a compiler intrinsic), or else an integer type we can use as BignumDblInt. But I'm starting to think about porting to 64-bit Visual Studio with a 64-bit BignumInt, and in that situation neither of those options will be available. I could write a piece of _out_-of-line x86-64 assembler in a separate source file and put a function call in DIVMOD_WORD, but instead I've decided to solve the problem in a more futureproof way: remove DIVMOD_WORD totally and write a division function that doesn't need it at all, solving not only today's porting headache but all future ones in this area. The new implementation works by precomputing (a good enough approximation to) the leading word of the reciprocal of the modulus, and then getting each word of quotient by multiplying by that reciprocal, where we previously used DIVMOD_WORD to divide by the leading word of the actual modulus. The reciprocal itself is computed outside internal_mod() and passed in as a parameter, allowing me to save time by only computing it once when I'm about to do a modpow. To some extent this complicates the implementation: the advantage of DIVMOD_WORD was that it yielded a full word q of quotient every time it was used, so the subtraction of q*m from the input could be done in a nicely word-aligned way. But the reciprocal multiply approach yields _almost_ a full word of quotient, because you have to make the reciprocal a bit short to avoid overflow at multiplication time. For a start, this means we have to do fractionally more iterations of the main loop; but more painfully, we can no longer depend on the subtraction of q*m at every step being word-aligned, and instead we have to be prepared to do it at any bit shift. But the flip side is that once we've implemented that, the rest of the algorithm becomes a lot less full of horrible special cases: in particular, we can now completely throw away the horribleness at all the call sites where we shift the modulus up by a fractional word to set its top bit, and then have to do a little dance to get the last few bits of quotient involving a second call to internal_mod. So there are points both for and against the new implementation in simplicity terms; but I think on balance it's more comprehensible than the old one, and a quick timing test suggests it also ends up a touch faster overall - the new testbn gets through the output of testdata/bignum.py in 4.034s where the old one took 4.392s.
2015-12-13 14:46:43 +00:00
corrections = 0;
Relegate BignumDblInt to an implementation detail of sshbn.h. As I mentioned in the previous commit, I'm going to want PuTTY to be able to run sensibly when compiled with 64-bit Visual Studio, including handling bignums in 64-bit chunks for speed. Unfortunately, 64-bit VS does not provide any type we can use as BignumDblInt in that situation (unlike 64-bit gcc and clang, which give us __uint128_t). The only facilities it provides are compiler intrinsics to access an add-with-carry operation and a 64x64->128 multiplication (the latter delivering its product in two separate 64-bit output chunks). Hence, here's a substantial rework of the bignum code to make it implement everything in terms of _those_ primitives, rather than depending throughout on having BignumDblInt available to use ad-hoc. BignumDblInt does still exist, for the moment, but now it's an internal implementation detail of sshbn.h, only declared inside a new set of macros implementing arithmetic primitives, and not accessible to any code outside sshbn.h (which confirms that I really did catch all uses of it and remove them). The resulting code is surprisingly nice-looking, actually. You'd expect more hassle and roundabout circumlocutions when you drop down to using a more basic set of primitive operations, but actually, in many cases it's turned out shorter to write things in terms of the new BignumADC and BignumMUL macros - because almost all my uses of BignumDblInt were implementing those operations anyway, taking several lines at a time, and now they can do each thing in just one line. The biggest headache was Poly1305: I wasn't able to find any sensible way to adapt the existing Python script that generates the various per-int-size implementations of arithmetic mod 2^130-5, and so I had to rewrite it from scratch instead, with nothing in common with the old version beyond a handful of comments. But even that seems to have worked out nicely: the new version has much more legible descriptions of the high-level algorithms, by virtue of having a 'Multiprecision' type which wraps up the division into words, and yet Multiprecision's range analysis allows it to automatically drop out special cases such as multiplication by 5 being much easier than multiplication by another multi-word integer.
2015-12-16 14:12:26 +00:00
if (prodh >= BIGNUM_TOP_BIT) {
Rewrite the core divide function to not use DIVMOD_WORD. DIVMOD_WORD is a portability hazard, because implementing it requires either a way to get direct access to the x86 DIV instruction or equivalent (be it inline assembler or a compiler intrinsic), or else an integer type we can use as BignumDblInt. But I'm starting to think about porting to 64-bit Visual Studio with a 64-bit BignumInt, and in that situation neither of those options will be available. I could write a piece of _out_-of-line x86-64 assembler in a separate source file and put a function call in DIVMOD_WORD, but instead I've decided to solve the problem in a more futureproof way: remove DIVMOD_WORD totally and write a division function that doesn't need it at all, solving not only today's porting headache but all future ones in this area. The new implementation works by precomputing (a good enough approximation to) the leading word of the reciprocal of the modulus, and then getting each word of quotient by multiplying by that reciprocal, where we previously used DIVMOD_WORD to divide by the leading word of the actual modulus. The reciprocal itself is computed outside internal_mod() and passed in as a parameter, allowing me to save time by only computing it once when I'm about to do a modpow. To some extent this complicates the implementation: the advantage of DIVMOD_WORD was that it yielded a full word q of quotient every time it was used, so the subtraction of q*m from the input could be done in a nicely word-aligned way. But the reciprocal multiply approach yields _almost_ a full word of quotient, because you have to make the reciprocal a bit short to avoid overflow at multiplication time. For a start, this means we have to do fractionally more iterations of the main loop; but more painfully, we can no longer depend on the subtraction of q*m at every step being word-aligned, and instead we have to be prepared to do it at any bit shift. But the flip side is that once we've implemented that, the rest of the algorithm becomes a lot less full of horrible special cases: in particular, we can now completely throw away the horribleness at all the call sites where we shift the modulus up by a fractional word to set its top bit, and then have to do a little dance to get the last few bits of quotient involving a second call to internal_mod. So there are points both for and against the new implementation in simplicity terms; but I think on balance it's more comprehensible than the old one, and a quick timing test suggests it also ends up a touch faster overall - the new testbn gets through the output of testdata/bignum.py in 4.034s where the old one took 4.392s.
2015-12-13 14:46:43 +00:00
do {
Relegate BignumDblInt to an implementation detail of sshbn.h. As I mentioned in the previous commit, I'm going to want PuTTY to be able to run sensibly when compiled with 64-bit Visual Studio, including handling bignums in 64-bit chunks for speed. Unfortunately, 64-bit VS does not provide any type we can use as BignumDblInt in that situation (unlike 64-bit gcc and clang, which give us __uint128_t). The only facilities it provides are compiler intrinsics to access an add-with-carry operation and a 64x64->128 multiplication (the latter delivering its product in two separate 64-bit output chunks). Hence, here's a substantial rework of the bignum code to make it implement everything in terms of _those_ primitives, rather than depending throughout on having BignumDblInt available to use ad-hoc. BignumDblInt does still exist, for the moment, but now it's an internal implementation detail of sshbn.h, only declared inside a new set of macros implementing arithmetic primitives, and not accessible to any code outside sshbn.h (which confirms that I really did catch all uses of it and remove them). The resulting code is surprisingly nice-looking, actually. You'd expect more hassle and roundabout circumlocutions when you drop down to using a more basic set of primitive operations, but actually, in many cases it's turned out shorter to write things in terms of the new BignumADC and BignumMUL macros - because almost all my uses of BignumDblInt were implementing those operations anyway, taking several lines at a time, and now they can do each thing in just one line. The biggest headache was Poly1305: I wasn't able to find any sensible way to adapt the existing Python script that generates the various per-int-size implementations of arithmetic mod 2^130-5, and so I had to rewrite it from scratch instead, with nothing in common with the old version beyond a handful of comments. But even that seems to have worked out nicely: the new version has much more legible descriptions of the high-level algorithms, by virtue of having a 'Multiprecision' type which wraps up the division into words, and yet Multiprecision's range analysis allows it to automatically drop out special cases such as multiplication by 5 being much easier than multiplication by another multi-word integer.
2015-12-16 14:12:26 +00:00
BignumCarry c = 1;
BignumADC(prodl, c, prodl, ~d, c); prodh += BIGNUM_INT_MASK + c;
Rewrite the core divide function to not use DIVMOD_WORD. DIVMOD_WORD is a portability hazard, because implementing it requires either a way to get direct access to the x86 DIV instruction or equivalent (be it inline assembler or a compiler intrinsic), or else an integer type we can use as BignumDblInt. But I'm starting to think about porting to 64-bit Visual Studio with a 64-bit BignumInt, and in that situation neither of those options will be available. I could write a piece of _out_-of-line x86-64 assembler in a separate source file and put a function call in DIVMOD_WORD, but instead I've decided to solve the problem in a more futureproof way: remove DIVMOD_WORD totally and write a division function that doesn't need it at all, solving not only today's porting headache but all future ones in this area. The new implementation works by precomputing (a good enough approximation to) the leading word of the reciprocal of the modulus, and then getting each word of quotient by multiplying by that reciprocal, where we previously used DIVMOD_WORD to divide by the leading word of the actual modulus. The reciprocal itself is computed outside internal_mod() and passed in as a parameter, allowing me to save time by only computing it once when I'm about to do a modpow. To some extent this complicates the implementation: the advantage of DIVMOD_WORD was that it yielded a full word q of quotient every time it was used, so the subtraction of q*m from the input could be done in a nicely word-aligned way. But the reciprocal multiply approach yields _almost_ a full word of quotient, because you have to make the reciprocal a bit short to avoid overflow at multiplication time. For a start, this means we have to do fractionally more iterations of the main loop; but more painfully, we can no longer depend on the subtraction of q*m at every step being word-aligned, and instead we have to be prepared to do it at any bit shift. But the flip side is that once we've implemented that, the rest of the algorithm becomes a lot less full of horrible special cases: in particular, we can now completely throw away the horribleness at all the call sites where we shift the modulus up by a fractional word to set its top bit, and then have to do a little dance to get the last few bits of quotient involving a second call to internal_mod. So there are points both for and against the new implementation in simplicity terms; but I think on balance it's more comprehensible than the old one, and a quick timing test suggests it also ends up a touch faster overall - the new testbn gets through the output of testdata/bignum.py in 4.034s where the old one took 4.392s.
2015-12-13 14:46:43 +00:00
recip--;
corrections++;
Relegate BignumDblInt to an implementation detail of sshbn.h. As I mentioned in the previous commit, I'm going to want PuTTY to be able to run sensibly when compiled with 64-bit Visual Studio, including handling bignums in 64-bit chunks for speed. Unfortunately, 64-bit VS does not provide any type we can use as BignumDblInt in that situation (unlike 64-bit gcc and clang, which give us __uint128_t). The only facilities it provides are compiler intrinsics to access an add-with-carry operation and a 64x64->128 multiplication (the latter delivering its product in two separate 64-bit output chunks). Hence, here's a substantial rework of the bignum code to make it implement everything in terms of _those_ primitives, rather than depending throughout on having BignumDblInt available to use ad-hoc. BignumDblInt does still exist, for the moment, but now it's an internal implementation detail of sshbn.h, only declared inside a new set of macros implementing arithmetic primitives, and not accessible to any code outside sshbn.h (which confirms that I really did catch all uses of it and remove them). The resulting code is surprisingly nice-looking, actually. You'd expect more hassle and roundabout circumlocutions when you drop down to using a more basic set of primitive operations, but actually, in many cases it's turned out shorter to write things in terms of the new BignumADC and BignumMUL macros - because almost all my uses of BignumDblInt were implementing those operations anyway, taking several lines at a time, and now they can do each thing in just one line. The biggest headache was Poly1305: I wasn't able to find any sensible way to adapt the existing Python script that generates the various per-int-size implementations of arithmetic mod 2^130-5, and so I had to rewrite it from scratch instead, with nothing in common with the old version beyond a handful of comments. But even that seems to have worked out nicely: the new version has much more legible descriptions of the high-level algorithms, by virtue of having a 'Multiprecision' type which wraps up the division into words, and yet Multiprecision's range analysis allows it to automatically drop out special cases such as multiplication by 5 being much easier than multiplication by another multi-word integer.
2015-12-16 14:12:26 +00:00
} while (prodh >= ((BignumInt)1 << (BIGNUM_INT_BITS-1)));
Rewrite the core divide function to not use DIVMOD_WORD. DIVMOD_WORD is a portability hazard, because implementing it requires either a way to get direct access to the x86 DIV instruction or equivalent (be it inline assembler or a compiler intrinsic), or else an integer type we can use as BignumDblInt. But I'm starting to think about porting to 64-bit Visual Studio with a 64-bit BignumInt, and in that situation neither of those options will be available. I could write a piece of _out_-of-line x86-64 assembler in a separate source file and put a function call in DIVMOD_WORD, but instead I've decided to solve the problem in a more futureproof way: remove DIVMOD_WORD totally and write a division function that doesn't need it at all, solving not only today's porting headache but all future ones in this area. The new implementation works by precomputing (a good enough approximation to) the leading word of the reciprocal of the modulus, and then getting each word of quotient by multiplying by that reciprocal, where we previously used DIVMOD_WORD to divide by the leading word of the actual modulus. The reciprocal itself is computed outside internal_mod() and passed in as a parameter, allowing me to save time by only computing it once when I'm about to do a modpow. To some extent this complicates the implementation: the advantage of DIVMOD_WORD was that it yielded a full word q of quotient every time it was used, so the subtraction of q*m from the input could be done in a nicely word-aligned way. But the reciprocal multiply approach yields _almost_ a full word of quotient, because you have to make the reciprocal a bit short to avoid overflow at multiplication time. For a start, this means we have to do fractionally more iterations of the main loop; but more painfully, we can no longer depend on the subtraction of q*m at every step being word-aligned, and instead we have to be prepared to do it at any bit shift. But the flip side is that once we've implemented that, the rest of the algorithm becomes a lot less full of horrible special cases: in particular, we can now completely throw away the horribleness at all the call sites where we shift the modulus up by a fractional word to set its top bit, and then have to do a little dance to get the last few bits of quotient involving a second call to internal_mod. So there are points both for and against the new implementation in simplicity terms; but I think on balance it's more comprehensible than the old one, and a quick timing test suggests it also ends up a touch faster overall - the new testbn gets through the output of testdata/bignum.py in 4.034s where the old one took 4.392s.
2015-12-13 14:46:43 +00:00
} else {
Relegate BignumDblInt to an implementation detail of sshbn.h. As I mentioned in the previous commit, I'm going to want PuTTY to be able to run sensibly when compiled with 64-bit Visual Studio, including handling bignums in 64-bit chunks for speed. Unfortunately, 64-bit VS does not provide any type we can use as BignumDblInt in that situation (unlike 64-bit gcc and clang, which give us __uint128_t). The only facilities it provides are compiler intrinsics to access an add-with-carry operation and a 64x64->128 multiplication (the latter delivering its product in two separate 64-bit output chunks). Hence, here's a substantial rework of the bignum code to make it implement everything in terms of _those_ primitives, rather than depending throughout on having BignumDblInt available to use ad-hoc. BignumDblInt does still exist, for the moment, but now it's an internal implementation detail of sshbn.h, only declared inside a new set of macros implementing arithmetic primitives, and not accessible to any code outside sshbn.h (which confirms that I really did catch all uses of it and remove them). The resulting code is surprisingly nice-looking, actually. You'd expect more hassle and roundabout circumlocutions when you drop down to using a more basic set of primitive operations, but actually, in many cases it's turned out shorter to write things in terms of the new BignumADC and BignumMUL macros - because almost all my uses of BignumDblInt were implementing those operations anyway, taking several lines at a time, and now they can do each thing in just one line. The biggest headache was Poly1305: I wasn't able to find any sensible way to adapt the existing Python script that generates the various per-int-size implementations of arithmetic mod 2^130-5, and so I had to rewrite it from scratch instead, with nothing in common with the old version beyond a handful of comments. But even that seems to have worked out nicely: the new version has much more legible descriptions of the high-level algorithms, by virtue of having a 'Multiprecision' type which wraps up the division into words, and yet Multiprecision's range analysis allows it to automatically drop out special cases such as multiplication by 5 being much easier than multiplication by another multi-word integer.
2015-12-16 14:12:26 +00:00
while (1) {
BignumInt newprodh, newprodl;
BignumCarry c = 0;
BignumADC(newprodl, c, prodl, d, c); newprodh = prodh + c;
if (newprodh >= BIGNUM_TOP_BIT)
break;
prodh = newprodh;
prodl = newprodl;
Rewrite the core divide function to not use DIVMOD_WORD. DIVMOD_WORD is a portability hazard, because implementing it requires either a way to get direct access to the x86 DIV instruction or equivalent (be it inline assembler or a compiler intrinsic), or else an integer type we can use as BignumDblInt. But I'm starting to think about porting to 64-bit Visual Studio with a 64-bit BignumInt, and in that situation neither of those options will be available. I could write a piece of _out_-of-line x86-64 assembler in a separate source file and put a function call in DIVMOD_WORD, but instead I've decided to solve the problem in a more futureproof way: remove DIVMOD_WORD totally and write a division function that doesn't need it at all, solving not only today's porting headache but all future ones in this area. The new implementation works by precomputing (a good enough approximation to) the leading word of the reciprocal of the modulus, and then getting each word of quotient by multiplying by that reciprocal, where we previously used DIVMOD_WORD to divide by the leading word of the actual modulus. The reciprocal itself is computed outside internal_mod() and passed in as a parameter, allowing me to save time by only computing it once when I'm about to do a modpow. To some extent this complicates the implementation: the advantage of DIVMOD_WORD was that it yielded a full word q of quotient every time it was used, so the subtraction of q*m from the input could be done in a nicely word-aligned way. But the reciprocal multiply approach yields _almost_ a full word of quotient, because you have to make the reciprocal a bit short to avoid overflow at multiplication time. For a start, this means we have to do fractionally more iterations of the main loop; but more painfully, we can no longer depend on the subtraction of q*m at every step being word-aligned, and instead we have to be prepared to do it at any bit shift. But the flip side is that once we've implemented that, the rest of the algorithm becomes a lot less full of horrible special cases: in particular, we can now completely throw away the horribleness at all the call sites where we shift the modulus up by a fractional word to set its top bit, and then have to do a little dance to get the last few bits of quotient involving a second call to internal_mod. So there are points both for and against the new implementation in simplicity terms; but I think on balance it's more comprehensible than the old one, and a quick timing test suggests it also ends up a touch faster overall - the new testbn gets through the output of testdata/bignum.py in 4.034s where the old one took 4.392s.
2015-12-13 14:46:43 +00:00
recip++;
corrections++;
}
}
return recip;
}
/*
* Compute a = a % m.
* Input in first alen words of a and first mlen words of m.
* Output in first alen words of a
* (of which first alen-mlen words will be zero).
* Quotient is accumulated in the `quotient' array, which is a Bignum
Rewrite the core divide function to not use DIVMOD_WORD. DIVMOD_WORD is a portability hazard, because implementing it requires either a way to get direct access to the x86 DIV instruction or equivalent (be it inline assembler or a compiler intrinsic), or else an integer type we can use as BignumDblInt. But I'm starting to think about porting to 64-bit Visual Studio with a 64-bit BignumInt, and in that situation neither of those options will be available. I could write a piece of _out_-of-line x86-64 assembler in a separate source file and put a function call in DIVMOD_WORD, but instead I've decided to solve the problem in a more futureproof way: remove DIVMOD_WORD totally and write a division function that doesn't need it at all, solving not only today's porting headache but all future ones in this area. The new implementation works by precomputing (a good enough approximation to) the leading word of the reciprocal of the modulus, and then getting each word of quotient by multiplying by that reciprocal, where we previously used DIVMOD_WORD to divide by the leading word of the actual modulus. The reciprocal itself is computed outside internal_mod() and passed in as a parameter, allowing me to save time by only computing it once when I'm about to do a modpow. To some extent this complicates the implementation: the advantage of DIVMOD_WORD was that it yielded a full word q of quotient every time it was used, so the subtraction of q*m from the input could be done in a nicely word-aligned way. But the reciprocal multiply approach yields _almost_ a full word of quotient, because you have to make the reciprocal a bit short to avoid overflow at multiplication time. For a start, this means we have to do fractionally more iterations of the main loop; but more painfully, we can no longer depend on the subtraction of q*m at every step being word-aligned, and instead we have to be prepared to do it at any bit shift. But the flip side is that once we've implemented that, the rest of the algorithm becomes a lot less full of horrible special cases: in particular, we can now completely throw away the horribleness at all the call sites where we shift the modulus up by a fractional word to set its top bit, and then have to do a little dance to get the last few bits of quotient involving a second call to internal_mod. So there are points both for and against the new implementation in simplicity terms; but I think on balance it's more comprehensible than the old one, and a quick timing test suggests it also ends up a touch faster overall - the new testbn gets through the output of testdata/bignum.py in 4.034s where the old one took 4.392s.
2015-12-13 14:46:43 +00:00
* rather than the internal bigendian format.
*
* 'recip' must be the result of calling reciprocal_word() on the top
* BIGNUM_INT_BITS of the modulus (denoted m0 in comments below), with
* the topmost set bit normalised to the MSB of the input to
* reciprocal_word. 'rshift' is how far left the top nonzero word of
* the modulus had to be shifted to set that top bit.
*/
static void internal_mod(BignumInt *a, int alen,
BignumInt *m, int mlen,
Rewrite the core divide function to not use DIVMOD_WORD. DIVMOD_WORD is a portability hazard, because implementing it requires either a way to get direct access to the x86 DIV instruction or equivalent (be it inline assembler or a compiler intrinsic), or else an integer type we can use as BignumDblInt. But I'm starting to think about porting to 64-bit Visual Studio with a 64-bit BignumInt, and in that situation neither of those options will be available. I could write a piece of _out_-of-line x86-64 assembler in a separate source file and put a function call in DIVMOD_WORD, but instead I've decided to solve the problem in a more futureproof way: remove DIVMOD_WORD totally and write a division function that doesn't need it at all, solving not only today's porting headache but all future ones in this area. The new implementation works by precomputing (a good enough approximation to) the leading word of the reciprocal of the modulus, and then getting each word of quotient by multiplying by that reciprocal, where we previously used DIVMOD_WORD to divide by the leading word of the actual modulus. The reciprocal itself is computed outside internal_mod() and passed in as a parameter, allowing me to save time by only computing it once when I'm about to do a modpow. To some extent this complicates the implementation: the advantage of DIVMOD_WORD was that it yielded a full word q of quotient every time it was used, so the subtraction of q*m from the input could be done in a nicely word-aligned way. But the reciprocal multiply approach yields _almost_ a full word of quotient, because you have to make the reciprocal a bit short to avoid overflow at multiplication time. For a start, this means we have to do fractionally more iterations of the main loop; but more painfully, we can no longer depend on the subtraction of q*m at every step being word-aligned, and instead we have to be prepared to do it at any bit shift. But the flip side is that once we've implemented that, the rest of the algorithm becomes a lot less full of horrible special cases: in particular, we can now completely throw away the horribleness at all the call sites where we shift the modulus up by a fractional word to set its top bit, and then have to do a little dance to get the last few bits of quotient involving a second call to internal_mod. So there are points both for and against the new implementation in simplicity terms; but I think on balance it's more comprehensible than the old one, and a quick timing test suggests it also ends up a touch faster overall - the new testbn gets through the output of testdata/bignum.py in 4.034s where the old one took 4.392s.
2015-12-13 14:46:43 +00:00
BignumInt *quot, BignumInt recip, int rshift)
{
int i, k;
Rewrite the core divide function to not use DIVMOD_WORD. DIVMOD_WORD is a portability hazard, because implementing it requires either a way to get direct access to the x86 DIV instruction or equivalent (be it inline assembler or a compiler intrinsic), or else an integer type we can use as BignumDblInt. But I'm starting to think about porting to 64-bit Visual Studio with a 64-bit BignumInt, and in that situation neither of those options will be available. I could write a piece of _out_-of-line x86-64 assembler in a separate source file and put a function call in DIVMOD_WORD, but instead I've decided to solve the problem in a more futureproof way: remove DIVMOD_WORD totally and write a division function that doesn't need it at all, solving not only today's porting headache but all future ones in this area. The new implementation works by precomputing (a good enough approximation to) the leading word of the reciprocal of the modulus, and then getting each word of quotient by multiplying by that reciprocal, where we previously used DIVMOD_WORD to divide by the leading word of the actual modulus. The reciprocal itself is computed outside internal_mod() and passed in as a parameter, allowing me to save time by only computing it once when I'm about to do a modpow. To some extent this complicates the implementation: the advantage of DIVMOD_WORD was that it yielded a full word q of quotient every time it was used, so the subtraction of q*m from the input could be done in a nicely word-aligned way. But the reciprocal multiply approach yields _almost_ a full word of quotient, because you have to make the reciprocal a bit short to avoid overflow at multiplication time. For a start, this means we have to do fractionally more iterations of the main loop; but more painfully, we can no longer depend on the subtraction of q*m at every step being word-aligned, and instead we have to be prepared to do it at any bit shift. But the flip side is that once we've implemented that, the rest of the algorithm becomes a lot less full of horrible special cases: in particular, we can now completely throw away the horribleness at all the call sites where we shift the modulus up by a fractional word to set its top bit, and then have to do a little dance to get the last few bits of quotient involving a second call to internal_mod. So there are points both for and against the new implementation in simplicity terms; but I think on balance it's more comprehensible than the old one, and a quick timing test suggests it also ends up a touch faster overall - the new testbn gets through the output of testdata/bignum.py in 4.034s where the old one took 4.392s.
2015-12-13 14:46:43 +00:00
#ifdef DIVISION_DEBUG
{
int d;
printf("start division, m=0x");
for (d = 0; d < mlen; d++)
printf("%0*llx", BIGNUM_INT_BITS/4, (unsigned long long)m[d]);
printf(", recip=%#0*llx, rshift=%d\n",
BIGNUM_INT_BITS/4, (unsigned long long)recip, rshift);
}
#endif
Rewrite the core divide function to not use DIVMOD_WORD. DIVMOD_WORD is a portability hazard, because implementing it requires either a way to get direct access to the x86 DIV instruction or equivalent (be it inline assembler or a compiler intrinsic), or else an integer type we can use as BignumDblInt. But I'm starting to think about porting to 64-bit Visual Studio with a 64-bit BignumInt, and in that situation neither of those options will be available. I could write a piece of _out_-of-line x86-64 assembler in a separate source file and put a function call in DIVMOD_WORD, but instead I've decided to solve the problem in a more futureproof way: remove DIVMOD_WORD totally and write a division function that doesn't need it at all, solving not only today's porting headache but all future ones in this area. The new implementation works by precomputing (a good enough approximation to) the leading word of the reciprocal of the modulus, and then getting each word of quotient by multiplying by that reciprocal, where we previously used DIVMOD_WORD to divide by the leading word of the actual modulus. The reciprocal itself is computed outside internal_mod() and passed in as a parameter, allowing me to save time by only computing it once when I'm about to do a modpow. To some extent this complicates the implementation: the advantage of DIVMOD_WORD was that it yielded a full word q of quotient every time it was used, so the subtraction of q*m from the input could be done in a nicely word-aligned way. But the reciprocal multiply approach yields _almost_ a full word of quotient, because you have to make the reciprocal a bit short to avoid overflow at multiplication time. For a start, this means we have to do fractionally more iterations of the main loop; but more painfully, we can no longer depend on the subtraction of q*m at every step being word-aligned, and instead we have to be prepared to do it at any bit shift. But the flip side is that once we've implemented that, the rest of the algorithm becomes a lot less full of horrible special cases: in particular, we can now completely throw away the horribleness at all the call sites where we shift the modulus up by a fractional word to set its top bit, and then have to do a little dance to get the last few bits of quotient involving a second call to internal_mod. So there are points both for and against the new implementation in simplicity terms; but I think on balance it's more comprehensible than the old one, and a quick timing test suggests it also ends up a touch faster overall - the new testbn gets through the output of testdata/bignum.py in 4.034s where the old one took 4.392s.
2015-12-13 14:46:43 +00:00
/*
* Repeatedly use that reciprocal estimate to get a decent number
* of quotient bits, and subtract off the resulting multiple of m.
*
* Normally we expect to terminate this loop by means of finding
* out q=0 part way through, but one way in which we might not get
* that far in the first place is if the input a is actually zero,
* in which case we'll discard zero words from the front of a
* until we reach the termination condition in the for statement
* here.
*/
for (i = 0; i <= alen - mlen ;) {
Relegate BignumDblInt to an implementation detail of sshbn.h. As I mentioned in the previous commit, I'm going to want PuTTY to be able to run sensibly when compiled with 64-bit Visual Studio, including handling bignums in 64-bit chunks for speed. Unfortunately, 64-bit VS does not provide any type we can use as BignumDblInt in that situation (unlike 64-bit gcc and clang, which give us __uint128_t). The only facilities it provides are compiler intrinsics to access an add-with-carry operation and a 64x64->128 multiplication (the latter delivering its product in two separate 64-bit output chunks). Hence, here's a substantial rework of the bignum code to make it implement everything in terms of _those_ primitives, rather than depending throughout on having BignumDblInt available to use ad-hoc. BignumDblInt does still exist, for the moment, but now it's an internal implementation detail of sshbn.h, only declared inside a new set of macros implementing arithmetic primitives, and not accessible to any code outside sshbn.h (which confirms that I really did catch all uses of it and remove them). The resulting code is surprisingly nice-looking, actually. You'd expect more hassle and roundabout circumlocutions when you drop down to using a more basic set of primitive operations, but actually, in many cases it's turned out shorter to write things in terms of the new BignumADC and BignumMUL macros - because almost all my uses of BignumDblInt were implementing those operations anyway, taking several lines at a time, and now they can do each thing in just one line. The biggest headache was Poly1305: I wasn't able to find any sensible way to adapt the existing Python script that generates the various per-int-size implementations of arithmetic mod 2^130-5, and so I had to rewrite it from scratch instead, with nothing in common with the old version beyond a handful of comments. But even that seems to have worked out nicely: the new version has much more legible descriptions of the high-level algorithms, by virtue of having a 'Multiprecision' type which wraps up the division into words, and yet Multiprecision's range analysis allows it to automatically drop out special cases such as multiplication by 5 being much easier than multiplication by another multi-word integer.
2015-12-16 14:12:26 +00:00
BignumInt product;
Rewrite the core divide function to not use DIVMOD_WORD. DIVMOD_WORD is a portability hazard, because implementing it requires either a way to get direct access to the x86 DIV instruction or equivalent (be it inline assembler or a compiler intrinsic), or else an integer type we can use as BignumDblInt. But I'm starting to think about porting to 64-bit Visual Studio with a 64-bit BignumInt, and in that situation neither of those options will be available. I could write a piece of _out_-of-line x86-64 assembler in a separate source file and put a function call in DIVMOD_WORD, but instead I've decided to solve the problem in a more futureproof way: remove DIVMOD_WORD totally and write a division function that doesn't need it at all, solving not only today's porting headache but all future ones in this area. The new implementation works by precomputing (a good enough approximation to) the leading word of the reciprocal of the modulus, and then getting each word of quotient by multiplying by that reciprocal, where we previously used DIVMOD_WORD to divide by the leading word of the actual modulus. The reciprocal itself is computed outside internal_mod() and passed in as a parameter, allowing me to save time by only computing it once when I'm about to do a modpow. To some extent this complicates the implementation: the advantage of DIVMOD_WORD was that it yielded a full word q of quotient every time it was used, so the subtraction of q*m from the input could be done in a nicely word-aligned way. But the reciprocal multiply approach yields _almost_ a full word of quotient, because you have to make the reciprocal a bit short to avoid overflow at multiplication time. For a start, this means we have to do fractionally more iterations of the main loop; but more painfully, we can no longer depend on the subtraction of q*m at every step being word-aligned, and instead we have to be prepared to do it at any bit shift. But the flip side is that once we've implemented that, the rest of the algorithm becomes a lot less full of horrible special cases: in particular, we can now completely throw away the horribleness at all the call sites where we shift the modulus up by a fractional word to set its top bit, and then have to do a little dance to get the last few bits of quotient involving a second call to internal_mod. So there are points both for and against the new implementation in simplicity terms; but I think on balance it's more comprehensible than the old one, and a quick timing test suggests it also ends up a touch faster overall - the new testbn gets through the output of testdata/bignum.py in 4.034s where the old one took 4.392s.
2015-12-13 14:46:43 +00:00
BignumInt aword, q;
int shift, full_bitoffset, bitoffset, wordoffset;
#ifdef DIVISION_DEBUG
{
int d;
printf("main loop, a=0x");
for (d = 0; d < alen; d++)
printf("%0*llx", BIGNUM_INT_BITS/4, (unsigned long long)a[d]);
printf("\n");
}
#endif
Rewrite the core divide function to not use DIVMOD_WORD. DIVMOD_WORD is a portability hazard, because implementing it requires either a way to get direct access to the x86 DIV instruction or equivalent (be it inline assembler or a compiler intrinsic), or else an integer type we can use as BignumDblInt. But I'm starting to think about porting to 64-bit Visual Studio with a 64-bit BignumInt, and in that situation neither of those options will be available. I could write a piece of _out_-of-line x86-64 assembler in a separate source file and put a function call in DIVMOD_WORD, but instead I've decided to solve the problem in a more futureproof way: remove DIVMOD_WORD totally and write a division function that doesn't need it at all, solving not only today's porting headache but all future ones in this area. The new implementation works by precomputing (a good enough approximation to) the leading word of the reciprocal of the modulus, and then getting each word of quotient by multiplying by that reciprocal, where we previously used DIVMOD_WORD to divide by the leading word of the actual modulus. The reciprocal itself is computed outside internal_mod() and passed in as a parameter, allowing me to save time by only computing it once when I'm about to do a modpow. To some extent this complicates the implementation: the advantage of DIVMOD_WORD was that it yielded a full word q of quotient every time it was used, so the subtraction of q*m from the input could be done in a nicely word-aligned way. But the reciprocal multiply approach yields _almost_ a full word of quotient, because you have to make the reciprocal a bit short to avoid overflow at multiplication time. For a start, this means we have to do fractionally more iterations of the main loop; but more painfully, we can no longer depend on the subtraction of q*m at every step being word-aligned, and instead we have to be prepared to do it at any bit shift. But the flip side is that once we've implemented that, the rest of the algorithm becomes a lot less full of horrible special cases: in particular, we can now completely throw away the horribleness at all the call sites where we shift the modulus up by a fractional word to set its top bit, and then have to do a little dance to get the last few bits of quotient involving a second call to internal_mod. So there are points both for and against the new implementation in simplicity terms; but I think on balance it's more comprehensible than the old one, and a quick timing test suggests it also ends up a touch faster overall - the new testbn gets through the output of testdata/bignum.py in 4.034s where the old one took 4.392s.
2015-12-13 14:46:43 +00:00
if (a[i] == 0) {
#ifdef DIVISION_DEBUG
printf("zero word at i=%d\n", i);
#endif
i++;
continue;
}
Rewrite the core divide function to not use DIVMOD_WORD. DIVMOD_WORD is a portability hazard, because implementing it requires either a way to get direct access to the x86 DIV instruction or equivalent (be it inline assembler or a compiler intrinsic), or else an integer type we can use as BignumDblInt. But I'm starting to think about porting to 64-bit Visual Studio with a 64-bit BignumInt, and in that situation neither of those options will be available. I could write a piece of _out_-of-line x86-64 assembler in a separate source file and put a function call in DIVMOD_WORD, but instead I've decided to solve the problem in a more futureproof way: remove DIVMOD_WORD totally and write a division function that doesn't need it at all, solving not only today's porting headache but all future ones in this area. The new implementation works by precomputing (a good enough approximation to) the leading word of the reciprocal of the modulus, and then getting each word of quotient by multiplying by that reciprocal, where we previously used DIVMOD_WORD to divide by the leading word of the actual modulus. The reciprocal itself is computed outside internal_mod() and passed in as a parameter, allowing me to save time by only computing it once when I'm about to do a modpow. To some extent this complicates the implementation: the advantage of DIVMOD_WORD was that it yielded a full word q of quotient every time it was used, so the subtraction of q*m from the input could be done in a nicely word-aligned way. But the reciprocal multiply approach yields _almost_ a full word of quotient, because you have to make the reciprocal a bit short to avoid overflow at multiplication time. For a start, this means we have to do fractionally more iterations of the main loop; but more painfully, we can no longer depend on the subtraction of q*m at every step being word-aligned, and instead we have to be prepared to do it at any bit shift. But the flip side is that once we've implemented that, the rest of the algorithm becomes a lot less full of horrible special cases: in particular, we can now completely throw away the horribleness at all the call sites where we shift the modulus up by a fractional word to set its top bit, and then have to do a little dance to get the last few bits of quotient involving a second call to internal_mod. So there are points both for and against the new implementation in simplicity terms; but I think on balance it's more comprehensible than the old one, and a quick timing test suggests it also ends up a touch faster overall - the new testbn gets through the output of testdata/bignum.py in 4.034s where the old one took 4.392s.
2015-12-13 14:46:43 +00:00
aword = a[i];
shift = bn_clz(aword);
aword <<= shift;
if (shift > 0 && i+1 < alen)
aword |= a[i+1] >> (BIGNUM_INT_BITS - shift);
Relegate BignumDblInt to an implementation detail of sshbn.h. As I mentioned in the previous commit, I'm going to want PuTTY to be able to run sensibly when compiled with 64-bit Visual Studio, including handling bignums in 64-bit chunks for speed. Unfortunately, 64-bit VS does not provide any type we can use as BignumDblInt in that situation (unlike 64-bit gcc and clang, which give us __uint128_t). The only facilities it provides are compiler intrinsics to access an add-with-carry operation and a 64x64->128 multiplication (the latter delivering its product in two separate 64-bit output chunks). Hence, here's a substantial rework of the bignum code to make it implement everything in terms of _those_ primitives, rather than depending throughout on having BignumDblInt available to use ad-hoc. BignumDblInt does still exist, for the moment, but now it's an internal implementation detail of sshbn.h, only declared inside a new set of macros implementing arithmetic primitives, and not accessible to any code outside sshbn.h (which confirms that I really did catch all uses of it and remove them). The resulting code is surprisingly nice-looking, actually. You'd expect more hassle and roundabout circumlocutions when you drop down to using a more basic set of primitive operations, but actually, in many cases it's turned out shorter to write things in terms of the new BignumADC and BignumMUL macros - because almost all my uses of BignumDblInt were implementing those operations anyway, taking several lines at a time, and now they can do each thing in just one line. The biggest headache was Poly1305: I wasn't able to find any sensible way to adapt the existing Python script that generates the various per-int-size implementations of arithmetic mod 2^130-5, and so I had to rewrite it from scratch instead, with nothing in common with the old version beyond a handful of comments. But even that seems to have worked out nicely: the new version has much more legible descriptions of the high-level algorithms, by virtue of having a 'Multiprecision' type which wraps up the division into words, and yet Multiprecision's range analysis allows it to automatically drop out special cases such as multiplication by 5 being much easier than multiplication by another multi-word integer.
2015-12-16 14:12:26 +00:00
{
BignumInt unused;
BignumMUL(q, unused, recip, aword);
(void)unused;
}
Rewrite the core divide function to not use DIVMOD_WORD. DIVMOD_WORD is a portability hazard, because implementing it requires either a way to get direct access to the x86 DIV instruction or equivalent (be it inline assembler or a compiler intrinsic), or else an integer type we can use as BignumDblInt. But I'm starting to think about porting to 64-bit Visual Studio with a 64-bit BignumInt, and in that situation neither of those options will be available. I could write a piece of _out_-of-line x86-64 assembler in a separate source file and put a function call in DIVMOD_WORD, but instead I've decided to solve the problem in a more futureproof way: remove DIVMOD_WORD totally and write a division function that doesn't need it at all, solving not only today's porting headache but all future ones in this area. The new implementation works by precomputing (a good enough approximation to) the leading word of the reciprocal of the modulus, and then getting each word of quotient by multiplying by that reciprocal, where we previously used DIVMOD_WORD to divide by the leading word of the actual modulus. The reciprocal itself is computed outside internal_mod() and passed in as a parameter, allowing me to save time by only computing it once when I'm about to do a modpow. To some extent this complicates the implementation: the advantage of DIVMOD_WORD was that it yielded a full word q of quotient every time it was used, so the subtraction of q*m from the input could be done in a nicely word-aligned way. But the reciprocal multiply approach yields _almost_ a full word of quotient, because you have to make the reciprocal a bit short to avoid overflow at multiplication time. For a start, this means we have to do fractionally more iterations of the main loop; but more painfully, we can no longer depend on the subtraction of q*m at every step being word-aligned, and instead we have to be prepared to do it at any bit shift. But the flip side is that once we've implemented that, the rest of the algorithm becomes a lot less full of horrible special cases: in particular, we can now completely throw away the horribleness at all the call sites where we shift the modulus up by a fractional word to set its top bit, and then have to do a little dance to get the last few bits of quotient involving a second call to internal_mod. So there are points both for and against the new implementation in simplicity terms; but I think on balance it's more comprehensible than the old one, and a quick timing test suggests it also ends up a touch faster overall - the new testbn gets through the output of testdata/bignum.py in 4.034s where the old one took 4.392s.
2015-12-13 14:46:43 +00:00
#ifdef DIVISION_DEBUG
printf("i=%d, aword=%#0*llx, shift=%d, q=%#0*llx\n",
i, BIGNUM_INT_BITS/4, (unsigned long long)aword,
shift, BIGNUM_INT_BITS/4, (unsigned long long)q);
#endif
/*
* Work out the right bit and word offsets to use when
* subtracting q*m from a.
*
* aword was taken from a[i], which means its LSB was at bit
* position (alen-1-i) * BIGNUM_INT_BITS. But then we shifted
* it left by 'shift', so now the low bit of aword corresponds
* to bit position (alen-1-i) * BIGNUM_INT_BITS - shift, i.e.
* aword is approximately equal to a / 2^(that).
*
* m0 comes from the top word of mod, so its LSB is at bit
* position (mlen-1) * BIGNUM_INT_BITS - rshift, i.e. it can
* be considered to be m / 2^(that power). 'recip' is the
* reciprocal of m0, times 2^(BIGNUM_INT_BITS*2-1), i.e. it's
* about 2^((mlen+1) * BIGNUM_INT_BITS - rshift - 1) / m.
*
* Hence, recip * aword is approximately equal to the product
* of those, which simplifies to
*
* a/m * 2^((mlen+2+i-alen)*BIGNUM_INT_BITS + shift - rshift - 1)
*
* But we've also shifted recip*aword down by BIGNUM_INT_BITS
* to form q, so we have
*
* q ~= a/m * 2^((mlen+1+i-alen)*BIGNUM_INT_BITS + shift - rshift - 1)
*
* and hence, when we now compute q*m, it will be about
* a*2^(all that lot), i.e. the negation of that expression is
* how far left we have to shift the product q*m to make it
* approximately equal to a.
*/
full_bitoffset = -((mlen+1+i-alen)*BIGNUM_INT_BITS + shift-rshift-1);
#ifdef DIVISION_DEBUG
printf("full_bitoffset=%d\n", full_bitoffset);
#endif
if (full_bitoffset < 0) {
/*
* If we find ourselves needing to shift q*m _right_, that
* means we've reached the bottom of the quotient. Clip q
* so that its right shift becomes zero, and if that means
* q becomes _actually_ zero, this loop is done.
*/
if (full_bitoffset <= -BIGNUM_INT_BITS)
break;
q >>= -full_bitoffset;
full_bitoffset = 0;
if (!q)
break;
#ifdef DIVISION_DEBUG
printf("now full_bitoffset=%d, q=%#0*llx\n",
full_bitoffset, BIGNUM_INT_BITS/4, (unsigned long long)q);
#endif
}
wordoffset = full_bitoffset / BIGNUM_INT_BITS;
bitoffset = full_bitoffset % BIGNUM_INT_BITS;
#ifdef DIVISION_DEBUG
printf("wordoffset=%d, bitoffset=%d\n", wordoffset, bitoffset);
#endif
/* wordoffset as computed above is the offset between the LSWs
* of m and a. But in fact m and a are stored MSW-first, so we
* need to adjust it to be the offset between the actual array
* indices, and flip the sign too. */
wordoffset = alen - mlen - wordoffset;
if (bitoffset == 0) {
Relegate BignumDblInt to an implementation detail of sshbn.h. As I mentioned in the previous commit, I'm going to want PuTTY to be able to run sensibly when compiled with 64-bit Visual Studio, including handling bignums in 64-bit chunks for speed. Unfortunately, 64-bit VS does not provide any type we can use as BignumDblInt in that situation (unlike 64-bit gcc and clang, which give us __uint128_t). The only facilities it provides are compiler intrinsics to access an add-with-carry operation and a 64x64->128 multiplication (the latter delivering its product in two separate 64-bit output chunks). Hence, here's a substantial rework of the bignum code to make it implement everything in terms of _those_ primitives, rather than depending throughout on having BignumDblInt available to use ad-hoc. BignumDblInt does still exist, for the moment, but now it's an internal implementation detail of sshbn.h, only declared inside a new set of macros implementing arithmetic primitives, and not accessible to any code outside sshbn.h (which confirms that I really did catch all uses of it and remove them). The resulting code is surprisingly nice-looking, actually. You'd expect more hassle and roundabout circumlocutions when you drop down to using a more basic set of primitive operations, but actually, in many cases it's turned out shorter to write things in terms of the new BignumADC and BignumMUL macros - because almost all my uses of BignumDblInt were implementing those operations anyway, taking several lines at a time, and now they can do each thing in just one line. The biggest headache was Poly1305: I wasn't able to find any sensible way to adapt the existing Python script that generates the various per-int-size implementations of arithmetic mod 2^130-5, and so I had to rewrite it from scratch instead, with nothing in common with the old version beyond a handful of comments. But even that seems to have worked out nicely: the new version has much more legible descriptions of the high-level algorithms, by virtue of having a 'Multiprecision' type which wraps up the division into words, and yet Multiprecision's range analysis allows it to automatically drop out special cases such as multiplication by 5 being much easier than multiplication by another multi-word integer.
2015-12-16 14:12:26 +00:00
BignumCarry c = 1;
Rewrite the core divide function to not use DIVMOD_WORD. DIVMOD_WORD is a portability hazard, because implementing it requires either a way to get direct access to the x86 DIV instruction or equivalent (be it inline assembler or a compiler intrinsic), or else an integer type we can use as BignumDblInt. But I'm starting to think about porting to 64-bit Visual Studio with a 64-bit BignumInt, and in that situation neither of those options will be available. I could write a piece of _out_-of-line x86-64 assembler in a separate source file and put a function call in DIVMOD_WORD, but instead I've decided to solve the problem in a more futureproof way: remove DIVMOD_WORD totally and write a division function that doesn't need it at all, solving not only today's porting headache but all future ones in this area. The new implementation works by precomputing (a good enough approximation to) the leading word of the reciprocal of the modulus, and then getting each word of quotient by multiplying by that reciprocal, where we previously used DIVMOD_WORD to divide by the leading word of the actual modulus. The reciprocal itself is computed outside internal_mod() and passed in as a parameter, allowing me to save time by only computing it once when I'm about to do a modpow. To some extent this complicates the implementation: the advantage of DIVMOD_WORD was that it yielded a full word q of quotient every time it was used, so the subtraction of q*m from the input could be done in a nicely word-aligned way. But the reciprocal multiply approach yields _almost_ a full word of quotient, because you have to make the reciprocal a bit short to avoid overflow at multiplication time. For a start, this means we have to do fractionally more iterations of the main loop; but more painfully, we can no longer depend on the subtraction of q*m at every step being word-aligned, and instead we have to be prepared to do it at any bit shift. But the flip side is that once we've implemented that, the rest of the algorithm becomes a lot less full of horrible special cases: in particular, we can now completely throw away the horribleness at all the call sites where we shift the modulus up by a fractional word to set its top bit, and then have to do a little dance to get the last few bits of quotient involving a second call to internal_mod. So there are points both for and against the new implementation in simplicity terms; but I think on balance it's more comprehensible than the old one, and a quick timing test suggests it also ends up a touch faster overall - the new testbn gets through the output of testdata/bignum.py in 4.034s where the old one took 4.392s.
2015-12-13 14:46:43 +00:00
BignumInt prev_hi_word = 0;
for (k = mlen - 1; wordoffset+k >= i; k--) {
BignumInt mword = k<0 ? 0 : m[k];
Relegate BignumDblInt to an implementation detail of sshbn.h. As I mentioned in the previous commit, I'm going to want PuTTY to be able to run sensibly when compiled with 64-bit Visual Studio, including handling bignums in 64-bit chunks for speed. Unfortunately, 64-bit VS does not provide any type we can use as BignumDblInt in that situation (unlike 64-bit gcc and clang, which give us __uint128_t). The only facilities it provides are compiler intrinsics to access an add-with-carry operation and a 64x64->128 multiplication (the latter delivering its product in two separate 64-bit output chunks). Hence, here's a substantial rework of the bignum code to make it implement everything in terms of _those_ primitives, rather than depending throughout on having BignumDblInt available to use ad-hoc. BignumDblInt does still exist, for the moment, but now it's an internal implementation detail of sshbn.h, only declared inside a new set of macros implementing arithmetic primitives, and not accessible to any code outside sshbn.h (which confirms that I really did catch all uses of it and remove them). The resulting code is surprisingly nice-looking, actually. You'd expect more hassle and roundabout circumlocutions when you drop down to using a more basic set of primitive operations, but actually, in many cases it's turned out shorter to write things in terms of the new BignumADC and BignumMUL macros - because almost all my uses of BignumDblInt were implementing those operations anyway, taking several lines at a time, and now they can do each thing in just one line. The biggest headache was Poly1305: I wasn't able to find any sensible way to adapt the existing Python script that generates the various per-int-size implementations of arithmetic mod 2^130-5, and so I had to rewrite it from scratch instead, with nothing in common with the old version beyond a handful of comments. But even that seems to have worked out nicely: the new version has much more legible descriptions of the high-level algorithms, by virtue of having a 'Multiprecision' type which wraps up the division into words, and yet Multiprecision's range analysis allows it to automatically drop out special cases such as multiplication by 5 being much easier than multiplication by another multi-word integer.
2015-12-16 14:12:26 +00:00
BignumMULADD(prev_hi_word, product, q, mword, prev_hi_word);
Rewrite the core divide function to not use DIVMOD_WORD. DIVMOD_WORD is a portability hazard, because implementing it requires either a way to get direct access to the x86 DIV instruction or equivalent (be it inline assembler or a compiler intrinsic), or else an integer type we can use as BignumDblInt. But I'm starting to think about porting to 64-bit Visual Studio with a 64-bit BignumInt, and in that situation neither of those options will be available. I could write a piece of _out_-of-line x86-64 assembler in a separate source file and put a function call in DIVMOD_WORD, but instead I've decided to solve the problem in a more futureproof way: remove DIVMOD_WORD totally and write a division function that doesn't need it at all, solving not only today's porting headache but all future ones in this area. The new implementation works by precomputing (a good enough approximation to) the leading word of the reciprocal of the modulus, and then getting each word of quotient by multiplying by that reciprocal, where we previously used DIVMOD_WORD to divide by the leading word of the actual modulus. The reciprocal itself is computed outside internal_mod() and passed in as a parameter, allowing me to save time by only computing it once when I'm about to do a modpow. To some extent this complicates the implementation: the advantage of DIVMOD_WORD was that it yielded a full word q of quotient every time it was used, so the subtraction of q*m from the input could be done in a nicely word-aligned way. But the reciprocal multiply approach yields _almost_ a full word of quotient, because you have to make the reciprocal a bit short to avoid overflow at multiplication time. For a start, this means we have to do fractionally more iterations of the main loop; but more painfully, we can no longer depend on the subtraction of q*m at every step being word-aligned, and instead we have to be prepared to do it at any bit shift. But the flip side is that once we've implemented that, the rest of the algorithm becomes a lot less full of horrible special cases: in particular, we can now completely throw away the horribleness at all the call sites where we shift the modulus up by a fractional word to set its top bit, and then have to do a little dance to get the last few bits of quotient involving a second call to internal_mod. So there are points both for and against the new implementation in simplicity terms; but I think on balance it's more comprehensible than the old one, and a quick timing test suggests it also ends up a touch faster overall - the new testbn gets through the output of testdata/bignum.py in 4.034s where the old one took 4.392s.
2015-12-13 14:46:43 +00:00
#ifdef DIVISION_DEBUG
printf(" aligned sub: product word for m[%d] = %#0*llx\n",
k, BIGNUM_INT_BITS/4,
Relegate BignumDblInt to an implementation detail of sshbn.h. As I mentioned in the previous commit, I'm going to want PuTTY to be able to run sensibly when compiled with 64-bit Visual Studio, including handling bignums in 64-bit chunks for speed. Unfortunately, 64-bit VS does not provide any type we can use as BignumDblInt in that situation (unlike 64-bit gcc and clang, which give us __uint128_t). The only facilities it provides are compiler intrinsics to access an add-with-carry operation and a 64x64->128 multiplication (the latter delivering its product in two separate 64-bit output chunks). Hence, here's a substantial rework of the bignum code to make it implement everything in terms of _those_ primitives, rather than depending throughout on having BignumDblInt available to use ad-hoc. BignumDblInt does still exist, for the moment, but now it's an internal implementation detail of sshbn.h, only declared inside a new set of macros implementing arithmetic primitives, and not accessible to any code outside sshbn.h (which confirms that I really did catch all uses of it and remove them). The resulting code is surprisingly nice-looking, actually. You'd expect more hassle and roundabout circumlocutions when you drop down to using a more basic set of primitive operations, but actually, in many cases it's turned out shorter to write things in terms of the new BignumADC and BignumMUL macros - because almost all my uses of BignumDblInt were implementing those operations anyway, taking several lines at a time, and now they can do each thing in just one line. The biggest headache was Poly1305: I wasn't able to find any sensible way to adapt the existing Python script that generates the various per-int-size implementations of arithmetic mod 2^130-5, and so I had to rewrite it from scratch instead, with nothing in common with the old version beyond a handful of comments. But even that seems to have worked out nicely: the new version has much more legible descriptions of the high-level algorithms, by virtue of having a 'Multiprecision' type which wraps up the division into words, and yet Multiprecision's range analysis allows it to automatically drop out special cases such as multiplication by 5 being much easier than multiplication by another multi-word integer.
2015-12-16 14:12:26 +00:00
(unsigned long long)product);
Rewrite the core divide function to not use DIVMOD_WORD. DIVMOD_WORD is a portability hazard, because implementing it requires either a way to get direct access to the x86 DIV instruction or equivalent (be it inline assembler or a compiler intrinsic), or else an integer type we can use as BignumDblInt. But I'm starting to think about porting to 64-bit Visual Studio with a 64-bit BignumInt, and in that situation neither of those options will be available. I could write a piece of _out_-of-line x86-64 assembler in a separate source file and put a function call in DIVMOD_WORD, but instead I've decided to solve the problem in a more futureproof way: remove DIVMOD_WORD totally and write a division function that doesn't need it at all, solving not only today's porting headache but all future ones in this area. The new implementation works by precomputing (a good enough approximation to) the leading word of the reciprocal of the modulus, and then getting each word of quotient by multiplying by that reciprocal, where we previously used DIVMOD_WORD to divide by the leading word of the actual modulus. The reciprocal itself is computed outside internal_mod() and passed in as a parameter, allowing me to save time by only computing it once when I'm about to do a modpow. To some extent this complicates the implementation: the advantage of DIVMOD_WORD was that it yielded a full word q of quotient every time it was used, so the subtraction of q*m from the input could be done in a nicely word-aligned way. But the reciprocal multiply approach yields _almost_ a full word of quotient, because you have to make the reciprocal a bit short to avoid overflow at multiplication time. For a start, this means we have to do fractionally more iterations of the main loop; but more painfully, we can no longer depend on the subtraction of q*m at every step being word-aligned, and instead we have to be prepared to do it at any bit shift. But the flip side is that once we've implemented that, the rest of the algorithm becomes a lot less full of horrible special cases: in particular, we can now completely throw away the horribleness at all the call sites where we shift the modulus up by a fractional word to set its top bit, and then have to do a little dance to get the last few bits of quotient involving a second call to internal_mod. So there are points both for and against the new implementation in simplicity terms; but I think on balance it's more comprehensible than the old one, and a quick timing test suggests it also ends up a touch faster overall - the new testbn gets through the output of testdata/bignum.py in 4.034s where the old one took 4.392s.
2015-12-13 14:46:43 +00:00
#endif
#ifdef DIVISION_DEBUG
printf(" aligned sub: subtrahend for a[%d] = %#0*llx\n",
wordoffset+k, BIGNUM_INT_BITS/4,
Relegate BignumDblInt to an implementation detail of sshbn.h. As I mentioned in the previous commit, I'm going to want PuTTY to be able to run sensibly when compiled with 64-bit Visual Studio, including handling bignums in 64-bit chunks for speed. Unfortunately, 64-bit VS does not provide any type we can use as BignumDblInt in that situation (unlike 64-bit gcc and clang, which give us __uint128_t). The only facilities it provides are compiler intrinsics to access an add-with-carry operation and a 64x64->128 multiplication (the latter delivering its product in two separate 64-bit output chunks). Hence, here's a substantial rework of the bignum code to make it implement everything in terms of _those_ primitives, rather than depending throughout on having BignumDblInt available to use ad-hoc. BignumDblInt does still exist, for the moment, but now it's an internal implementation detail of sshbn.h, only declared inside a new set of macros implementing arithmetic primitives, and not accessible to any code outside sshbn.h (which confirms that I really did catch all uses of it and remove them). The resulting code is surprisingly nice-looking, actually. You'd expect more hassle and roundabout circumlocutions when you drop down to using a more basic set of primitive operations, but actually, in many cases it's turned out shorter to write things in terms of the new BignumADC and BignumMUL macros - because almost all my uses of BignumDblInt were implementing those operations anyway, taking several lines at a time, and now they can do each thing in just one line. The biggest headache was Poly1305: I wasn't able to find any sensible way to adapt the existing Python script that generates the various per-int-size implementations of arithmetic mod 2^130-5, and so I had to rewrite it from scratch instead, with nothing in common with the old version beyond a handful of comments. But even that seems to have worked out nicely: the new version has much more legible descriptions of the high-level algorithms, by virtue of having a 'Multiprecision' type which wraps up the division into words, and yet Multiprecision's range analysis allows it to automatically drop out special cases such as multiplication by 5 being much easier than multiplication by another multi-word integer.
2015-12-16 14:12:26 +00:00
(unsigned long long)product);
Rewrite the core divide function to not use DIVMOD_WORD. DIVMOD_WORD is a portability hazard, because implementing it requires either a way to get direct access to the x86 DIV instruction or equivalent (be it inline assembler or a compiler intrinsic), or else an integer type we can use as BignumDblInt. But I'm starting to think about porting to 64-bit Visual Studio with a 64-bit BignumInt, and in that situation neither of those options will be available. I could write a piece of _out_-of-line x86-64 assembler in a separate source file and put a function call in DIVMOD_WORD, but instead I've decided to solve the problem in a more futureproof way: remove DIVMOD_WORD totally and write a division function that doesn't need it at all, solving not only today's porting headache but all future ones in this area. The new implementation works by precomputing (a good enough approximation to) the leading word of the reciprocal of the modulus, and then getting each word of quotient by multiplying by that reciprocal, where we previously used DIVMOD_WORD to divide by the leading word of the actual modulus. The reciprocal itself is computed outside internal_mod() and passed in as a parameter, allowing me to save time by only computing it once when I'm about to do a modpow. To some extent this complicates the implementation: the advantage of DIVMOD_WORD was that it yielded a full word q of quotient every time it was used, so the subtraction of q*m from the input could be done in a nicely word-aligned way. But the reciprocal multiply approach yields _almost_ a full word of quotient, because you have to make the reciprocal a bit short to avoid overflow at multiplication time. For a start, this means we have to do fractionally more iterations of the main loop; but more painfully, we can no longer depend on the subtraction of q*m at every step being word-aligned, and instead we have to be prepared to do it at any bit shift. But the flip side is that once we've implemented that, the rest of the algorithm becomes a lot less full of horrible special cases: in particular, we can now completely throw away the horribleness at all the call sites where we shift the modulus up by a fractional word to set its top bit, and then have to do a little dance to get the last few bits of quotient involving a second call to internal_mod. So there are points both for and against the new implementation in simplicity terms; but I think on balance it's more comprehensible than the old one, and a quick timing test suggests it also ends up a touch faster overall - the new testbn gets through the output of testdata/bignum.py in 4.034s where the old one took 4.392s.
2015-12-13 14:46:43 +00:00
#endif
Relegate BignumDblInt to an implementation detail of sshbn.h. As I mentioned in the previous commit, I'm going to want PuTTY to be able to run sensibly when compiled with 64-bit Visual Studio, including handling bignums in 64-bit chunks for speed. Unfortunately, 64-bit VS does not provide any type we can use as BignumDblInt in that situation (unlike 64-bit gcc and clang, which give us __uint128_t). The only facilities it provides are compiler intrinsics to access an add-with-carry operation and a 64x64->128 multiplication (the latter delivering its product in two separate 64-bit output chunks). Hence, here's a substantial rework of the bignum code to make it implement everything in terms of _those_ primitives, rather than depending throughout on having BignumDblInt available to use ad-hoc. BignumDblInt does still exist, for the moment, but now it's an internal implementation detail of sshbn.h, only declared inside a new set of macros implementing arithmetic primitives, and not accessible to any code outside sshbn.h (which confirms that I really did catch all uses of it and remove them). The resulting code is surprisingly nice-looking, actually. You'd expect more hassle and roundabout circumlocutions when you drop down to using a more basic set of primitive operations, but actually, in many cases it's turned out shorter to write things in terms of the new BignumADC and BignumMUL macros - because almost all my uses of BignumDblInt were implementing those operations anyway, taking several lines at a time, and now they can do each thing in just one line. The biggest headache was Poly1305: I wasn't able to find any sensible way to adapt the existing Python script that generates the various per-int-size implementations of arithmetic mod 2^130-5, and so I had to rewrite it from scratch instead, with nothing in common with the old version beyond a handful of comments. But even that seems to have worked out nicely: the new version has much more legible descriptions of the high-level algorithms, by virtue of having a 'Multiprecision' type which wraps up the division into words, and yet Multiprecision's range analysis allows it to automatically drop out special cases such as multiplication by 5 being much easier than multiplication by another multi-word integer.
2015-12-16 14:12:26 +00:00
BignumADC(a[wordoffset+k], c, a[wordoffset+k], ~product, c);
Rewrite the core divide function to not use DIVMOD_WORD. DIVMOD_WORD is a portability hazard, because implementing it requires either a way to get direct access to the x86 DIV instruction or equivalent (be it inline assembler or a compiler intrinsic), or else an integer type we can use as BignumDblInt. But I'm starting to think about porting to 64-bit Visual Studio with a 64-bit BignumInt, and in that situation neither of those options will be available. I could write a piece of _out_-of-line x86-64 assembler in a separate source file and put a function call in DIVMOD_WORD, but instead I've decided to solve the problem in a more futureproof way: remove DIVMOD_WORD totally and write a division function that doesn't need it at all, solving not only today's porting headache but all future ones in this area. The new implementation works by precomputing (a good enough approximation to) the leading word of the reciprocal of the modulus, and then getting each word of quotient by multiplying by that reciprocal, where we previously used DIVMOD_WORD to divide by the leading word of the actual modulus. The reciprocal itself is computed outside internal_mod() and passed in as a parameter, allowing me to save time by only computing it once when I'm about to do a modpow. To some extent this complicates the implementation: the advantage of DIVMOD_WORD was that it yielded a full word q of quotient every time it was used, so the subtraction of q*m from the input could be done in a nicely word-aligned way. But the reciprocal multiply approach yields _almost_ a full word of quotient, because you have to make the reciprocal a bit short to avoid overflow at multiplication time. For a start, this means we have to do fractionally more iterations of the main loop; but more painfully, we can no longer depend on the subtraction of q*m at every step being word-aligned, and instead we have to be prepared to do it at any bit shift. But the flip side is that once we've implemented that, the rest of the algorithm becomes a lot less full of horrible special cases: in particular, we can now completely throw away the horribleness at all the call sites where we shift the modulus up by a fractional word to set its top bit, and then have to do a little dance to get the last few bits of quotient involving a second call to internal_mod. So there are points both for and against the new implementation in simplicity terms; but I think on balance it's more comprehensible than the old one, and a quick timing test suggests it also ends up a touch faster overall - the new testbn gets through the output of testdata/bignum.py in 4.034s where the old one took 4.392s.
2015-12-13 14:46:43 +00:00
}
} else {
BignumInt add_word = 0;
BignumInt c = 1;
BignumInt prev_hi_word = 0;
for (k = mlen - 1; wordoffset+k >= i; k--) {
BignumInt mword = k<0 ? 0 : m[k];
Relegate BignumDblInt to an implementation detail of sshbn.h. As I mentioned in the previous commit, I'm going to want PuTTY to be able to run sensibly when compiled with 64-bit Visual Studio, including handling bignums in 64-bit chunks for speed. Unfortunately, 64-bit VS does not provide any type we can use as BignumDblInt in that situation (unlike 64-bit gcc and clang, which give us __uint128_t). The only facilities it provides are compiler intrinsics to access an add-with-carry operation and a 64x64->128 multiplication (the latter delivering its product in two separate 64-bit output chunks). Hence, here's a substantial rework of the bignum code to make it implement everything in terms of _those_ primitives, rather than depending throughout on having BignumDblInt available to use ad-hoc. BignumDblInt does still exist, for the moment, but now it's an internal implementation detail of sshbn.h, only declared inside a new set of macros implementing arithmetic primitives, and not accessible to any code outside sshbn.h (which confirms that I really did catch all uses of it and remove them). The resulting code is surprisingly nice-looking, actually. You'd expect more hassle and roundabout circumlocutions when you drop down to using a more basic set of primitive operations, but actually, in many cases it's turned out shorter to write things in terms of the new BignumADC and BignumMUL macros - because almost all my uses of BignumDblInt were implementing those operations anyway, taking several lines at a time, and now they can do each thing in just one line. The biggest headache was Poly1305: I wasn't able to find any sensible way to adapt the existing Python script that generates the various per-int-size implementations of arithmetic mod 2^130-5, and so I had to rewrite it from scratch instead, with nothing in common with the old version beyond a handful of comments. But even that seems to have worked out nicely: the new version has much more legible descriptions of the high-level algorithms, by virtue of having a 'Multiprecision' type which wraps up the division into words, and yet Multiprecision's range analysis allows it to automatically drop out special cases such as multiplication by 5 being much easier than multiplication by another multi-word integer.
2015-12-16 14:12:26 +00:00
BignumMULADD(prev_hi_word, product, q, mword, prev_hi_word);
Rewrite the core divide function to not use DIVMOD_WORD. DIVMOD_WORD is a portability hazard, because implementing it requires either a way to get direct access to the x86 DIV instruction or equivalent (be it inline assembler or a compiler intrinsic), or else an integer type we can use as BignumDblInt. But I'm starting to think about porting to 64-bit Visual Studio with a 64-bit BignumInt, and in that situation neither of those options will be available. I could write a piece of _out_-of-line x86-64 assembler in a separate source file and put a function call in DIVMOD_WORD, but instead I've decided to solve the problem in a more futureproof way: remove DIVMOD_WORD totally and write a division function that doesn't need it at all, solving not only today's porting headache but all future ones in this area. The new implementation works by precomputing (a good enough approximation to) the leading word of the reciprocal of the modulus, and then getting each word of quotient by multiplying by that reciprocal, where we previously used DIVMOD_WORD to divide by the leading word of the actual modulus. The reciprocal itself is computed outside internal_mod() and passed in as a parameter, allowing me to save time by only computing it once when I'm about to do a modpow. To some extent this complicates the implementation: the advantage of DIVMOD_WORD was that it yielded a full word q of quotient every time it was used, so the subtraction of q*m from the input could be done in a nicely word-aligned way. But the reciprocal multiply approach yields _almost_ a full word of quotient, because you have to make the reciprocal a bit short to avoid overflow at multiplication time. For a start, this means we have to do fractionally more iterations of the main loop; but more painfully, we can no longer depend on the subtraction of q*m at every step being word-aligned, and instead we have to be prepared to do it at any bit shift. But the flip side is that once we've implemented that, the rest of the algorithm becomes a lot less full of horrible special cases: in particular, we can now completely throw away the horribleness at all the call sites where we shift the modulus up by a fractional word to set its top bit, and then have to do a little dance to get the last few bits of quotient involving a second call to internal_mod. So there are points both for and against the new implementation in simplicity terms; but I think on balance it's more comprehensible than the old one, and a quick timing test suggests it also ends up a touch faster overall - the new testbn gets through the output of testdata/bignum.py in 4.034s where the old one took 4.392s.
2015-12-13 14:46:43 +00:00
#ifdef DIVISION_DEBUG
printf(" unaligned sub: product word for m[%d] = %#0*llx\n",
k, BIGNUM_INT_BITS/4,
Relegate BignumDblInt to an implementation detail of sshbn.h. As I mentioned in the previous commit, I'm going to want PuTTY to be able to run sensibly when compiled with 64-bit Visual Studio, including handling bignums in 64-bit chunks for speed. Unfortunately, 64-bit VS does not provide any type we can use as BignumDblInt in that situation (unlike 64-bit gcc and clang, which give us __uint128_t). The only facilities it provides are compiler intrinsics to access an add-with-carry operation and a 64x64->128 multiplication (the latter delivering its product in two separate 64-bit output chunks). Hence, here's a substantial rework of the bignum code to make it implement everything in terms of _those_ primitives, rather than depending throughout on having BignumDblInt available to use ad-hoc. BignumDblInt does still exist, for the moment, but now it's an internal implementation detail of sshbn.h, only declared inside a new set of macros implementing arithmetic primitives, and not accessible to any code outside sshbn.h (which confirms that I really did catch all uses of it and remove them). The resulting code is surprisingly nice-looking, actually. You'd expect more hassle and roundabout circumlocutions when you drop down to using a more basic set of primitive operations, but actually, in many cases it's turned out shorter to write things in terms of the new BignumADC and BignumMUL macros - because almost all my uses of BignumDblInt were implementing those operations anyway, taking several lines at a time, and now they can do each thing in just one line. The biggest headache was Poly1305: I wasn't able to find any sensible way to adapt the existing Python script that generates the various per-int-size implementations of arithmetic mod 2^130-5, and so I had to rewrite it from scratch instead, with nothing in common with the old version beyond a handful of comments. But even that seems to have worked out nicely: the new version has much more legible descriptions of the high-level algorithms, by virtue of having a 'Multiprecision' type which wraps up the division into words, and yet Multiprecision's range analysis allows it to automatically drop out special cases such as multiplication by 5 being much easier than multiplication by another multi-word integer.
2015-12-16 14:12:26 +00:00
(unsigned long long)product);
Rewrite the core divide function to not use DIVMOD_WORD. DIVMOD_WORD is a portability hazard, because implementing it requires either a way to get direct access to the x86 DIV instruction or equivalent (be it inline assembler or a compiler intrinsic), or else an integer type we can use as BignumDblInt. But I'm starting to think about porting to 64-bit Visual Studio with a 64-bit BignumInt, and in that situation neither of those options will be available. I could write a piece of _out_-of-line x86-64 assembler in a separate source file and put a function call in DIVMOD_WORD, but instead I've decided to solve the problem in a more futureproof way: remove DIVMOD_WORD totally and write a division function that doesn't need it at all, solving not only today's porting headache but all future ones in this area. The new implementation works by precomputing (a good enough approximation to) the leading word of the reciprocal of the modulus, and then getting each word of quotient by multiplying by that reciprocal, where we previously used DIVMOD_WORD to divide by the leading word of the actual modulus. The reciprocal itself is computed outside internal_mod() and passed in as a parameter, allowing me to save time by only computing it once when I'm about to do a modpow. To some extent this complicates the implementation: the advantage of DIVMOD_WORD was that it yielded a full word q of quotient every time it was used, so the subtraction of q*m from the input could be done in a nicely word-aligned way. But the reciprocal multiply approach yields _almost_ a full word of quotient, because you have to make the reciprocal a bit short to avoid overflow at multiplication time. For a start, this means we have to do fractionally more iterations of the main loop; but more painfully, we can no longer depend on the subtraction of q*m at every step being word-aligned, and instead we have to be prepared to do it at any bit shift. But the flip side is that once we've implemented that, the rest of the algorithm becomes a lot less full of horrible special cases: in particular, we can now completely throw away the horribleness at all the call sites where we shift the modulus up by a fractional word to set its top bit, and then have to do a little dance to get the last few bits of quotient involving a second call to internal_mod. So there are points both for and against the new implementation in simplicity terms; but I think on balance it's more comprehensible than the old one, and a quick timing test suggests it also ends up a touch faster overall - the new testbn gets through the output of testdata/bignum.py in 4.034s where the old one took 4.392s.
2015-12-13 14:46:43 +00:00
#endif
Relegate BignumDblInt to an implementation detail of sshbn.h. As I mentioned in the previous commit, I'm going to want PuTTY to be able to run sensibly when compiled with 64-bit Visual Studio, including handling bignums in 64-bit chunks for speed. Unfortunately, 64-bit VS does not provide any type we can use as BignumDblInt in that situation (unlike 64-bit gcc and clang, which give us __uint128_t). The only facilities it provides are compiler intrinsics to access an add-with-carry operation and a 64x64->128 multiplication (the latter delivering its product in two separate 64-bit output chunks). Hence, here's a substantial rework of the bignum code to make it implement everything in terms of _those_ primitives, rather than depending throughout on having BignumDblInt available to use ad-hoc. BignumDblInt does still exist, for the moment, but now it's an internal implementation detail of sshbn.h, only declared inside a new set of macros implementing arithmetic primitives, and not accessible to any code outside sshbn.h (which confirms that I really did catch all uses of it and remove them). The resulting code is surprisingly nice-looking, actually. You'd expect more hassle and roundabout circumlocutions when you drop down to using a more basic set of primitive operations, but actually, in many cases it's turned out shorter to write things in terms of the new BignumADC and BignumMUL macros - because almost all my uses of BignumDblInt were implementing those operations anyway, taking several lines at a time, and now they can do each thing in just one line. The biggest headache was Poly1305: I wasn't able to find any sensible way to adapt the existing Python script that generates the various per-int-size implementations of arithmetic mod 2^130-5, and so I had to rewrite it from scratch instead, with nothing in common with the old version beyond a handful of comments. But even that seems to have worked out nicely: the new version has much more legible descriptions of the high-level algorithms, by virtue of having a 'Multiprecision' type which wraps up the division into words, and yet Multiprecision's range analysis allows it to automatically drop out special cases such as multiplication by 5 being much easier than multiplication by another multi-word integer.
2015-12-16 14:12:26 +00:00
add_word |= product << bitoffset;
Rewrite the core divide function to not use DIVMOD_WORD. DIVMOD_WORD is a portability hazard, because implementing it requires either a way to get direct access to the x86 DIV instruction or equivalent (be it inline assembler or a compiler intrinsic), or else an integer type we can use as BignumDblInt. But I'm starting to think about porting to 64-bit Visual Studio with a 64-bit BignumInt, and in that situation neither of those options will be available. I could write a piece of _out_-of-line x86-64 assembler in a separate source file and put a function call in DIVMOD_WORD, but instead I've decided to solve the problem in a more futureproof way: remove DIVMOD_WORD totally and write a division function that doesn't need it at all, solving not only today's porting headache but all future ones in this area. The new implementation works by precomputing (a good enough approximation to) the leading word of the reciprocal of the modulus, and then getting each word of quotient by multiplying by that reciprocal, where we previously used DIVMOD_WORD to divide by the leading word of the actual modulus. The reciprocal itself is computed outside internal_mod() and passed in as a parameter, allowing me to save time by only computing it once when I'm about to do a modpow. To some extent this complicates the implementation: the advantage of DIVMOD_WORD was that it yielded a full word q of quotient every time it was used, so the subtraction of q*m from the input could be done in a nicely word-aligned way. But the reciprocal multiply approach yields _almost_ a full word of quotient, because you have to make the reciprocal a bit short to avoid overflow at multiplication time. For a start, this means we have to do fractionally more iterations of the main loop; but more painfully, we can no longer depend on the subtraction of q*m at every step being word-aligned, and instead we have to be prepared to do it at any bit shift. But the flip side is that once we've implemented that, the rest of the algorithm becomes a lot less full of horrible special cases: in particular, we can now completely throw away the horribleness at all the call sites where we shift the modulus up by a fractional word to set its top bit, and then have to do a little dance to get the last few bits of quotient involving a second call to internal_mod. So there are points both for and against the new implementation in simplicity terms; but I think on balance it's more comprehensible than the old one, and a quick timing test suggests it also ends up a touch faster overall - the new testbn gets through the output of testdata/bignum.py in 4.034s where the old one took 4.392s.
2015-12-13 14:46:43 +00:00
#ifdef DIVISION_DEBUG
printf(" unaligned sub: subtrahend for a[%d] = %#0*llx\n",
wordoffset+k,
BIGNUM_INT_BITS/4, (unsigned long long)add_word);
#endif
Relegate BignumDblInt to an implementation detail of sshbn.h. As I mentioned in the previous commit, I'm going to want PuTTY to be able to run sensibly when compiled with 64-bit Visual Studio, including handling bignums in 64-bit chunks for speed. Unfortunately, 64-bit VS does not provide any type we can use as BignumDblInt in that situation (unlike 64-bit gcc and clang, which give us __uint128_t). The only facilities it provides are compiler intrinsics to access an add-with-carry operation and a 64x64->128 multiplication (the latter delivering its product in two separate 64-bit output chunks). Hence, here's a substantial rework of the bignum code to make it implement everything in terms of _those_ primitives, rather than depending throughout on having BignumDblInt available to use ad-hoc. BignumDblInt does still exist, for the moment, but now it's an internal implementation detail of sshbn.h, only declared inside a new set of macros implementing arithmetic primitives, and not accessible to any code outside sshbn.h (which confirms that I really did catch all uses of it and remove them). The resulting code is surprisingly nice-looking, actually. You'd expect more hassle and roundabout circumlocutions when you drop down to using a more basic set of primitive operations, but actually, in many cases it's turned out shorter to write things in terms of the new BignumADC and BignumMUL macros - because almost all my uses of BignumDblInt were implementing those operations anyway, taking several lines at a time, and now they can do each thing in just one line. The biggest headache was Poly1305: I wasn't able to find any sensible way to adapt the existing Python script that generates the various per-int-size implementations of arithmetic mod 2^130-5, and so I had to rewrite it from scratch instead, with nothing in common with the old version beyond a handful of comments. But even that seems to have worked out nicely: the new version has much more legible descriptions of the high-level algorithms, by virtue of having a 'Multiprecision' type which wraps up the division into words, and yet Multiprecision's range analysis allows it to automatically drop out special cases such as multiplication by 5 being much easier than multiplication by another multi-word integer.
2015-12-16 14:12:26 +00:00
BignumADC(a[wordoffset+k], c, a[wordoffset+k], ~add_word, c);
Rewrite the core divide function to not use DIVMOD_WORD. DIVMOD_WORD is a portability hazard, because implementing it requires either a way to get direct access to the x86 DIV instruction or equivalent (be it inline assembler or a compiler intrinsic), or else an integer type we can use as BignumDblInt. But I'm starting to think about porting to 64-bit Visual Studio with a 64-bit BignumInt, and in that situation neither of those options will be available. I could write a piece of _out_-of-line x86-64 assembler in a separate source file and put a function call in DIVMOD_WORD, but instead I've decided to solve the problem in a more futureproof way: remove DIVMOD_WORD totally and write a division function that doesn't need it at all, solving not only today's porting headache but all future ones in this area. The new implementation works by precomputing (a good enough approximation to) the leading word of the reciprocal of the modulus, and then getting each word of quotient by multiplying by that reciprocal, where we previously used DIVMOD_WORD to divide by the leading word of the actual modulus. The reciprocal itself is computed outside internal_mod() and passed in as a parameter, allowing me to save time by only computing it once when I'm about to do a modpow. To some extent this complicates the implementation: the advantage of DIVMOD_WORD was that it yielded a full word q of quotient every time it was used, so the subtraction of q*m from the input could be done in a nicely word-aligned way. But the reciprocal multiply approach yields _almost_ a full word of quotient, because you have to make the reciprocal a bit short to avoid overflow at multiplication time. For a start, this means we have to do fractionally more iterations of the main loop; but more painfully, we can no longer depend on the subtraction of q*m at every step being word-aligned, and instead we have to be prepared to do it at any bit shift. But the flip side is that once we've implemented that, the rest of the algorithm becomes a lot less full of horrible special cases: in particular, we can now completely throw away the horribleness at all the call sites where we shift the modulus up by a fractional word to set its top bit, and then have to do a little dance to get the last few bits of quotient involving a second call to internal_mod. So there are points both for and against the new implementation in simplicity terms; but I think on balance it's more comprehensible than the old one, and a quick timing test suggests it also ends up a touch faster overall - the new testbn gets through the output of testdata/bignum.py in 4.034s where the old one took 4.392s.
2015-12-13 14:46:43 +00:00
Relegate BignumDblInt to an implementation detail of sshbn.h. As I mentioned in the previous commit, I'm going to want PuTTY to be able to run sensibly when compiled with 64-bit Visual Studio, including handling bignums in 64-bit chunks for speed. Unfortunately, 64-bit VS does not provide any type we can use as BignumDblInt in that situation (unlike 64-bit gcc and clang, which give us __uint128_t). The only facilities it provides are compiler intrinsics to access an add-with-carry operation and a 64x64->128 multiplication (the latter delivering its product in two separate 64-bit output chunks). Hence, here's a substantial rework of the bignum code to make it implement everything in terms of _those_ primitives, rather than depending throughout on having BignumDblInt available to use ad-hoc. BignumDblInt does still exist, for the moment, but now it's an internal implementation detail of sshbn.h, only declared inside a new set of macros implementing arithmetic primitives, and not accessible to any code outside sshbn.h (which confirms that I really did catch all uses of it and remove them). The resulting code is surprisingly nice-looking, actually. You'd expect more hassle and roundabout circumlocutions when you drop down to using a more basic set of primitive operations, but actually, in many cases it's turned out shorter to write things in terms of the new BignumADC and BignumMUL macros - because almost all my uses of BignumDblInt were implementing those operations anyway, taking several lines at a time, and now they can do each thing in just one line. The biggest headache was Poly1305: I wasn't able to find any sensible way to adapt the existing Python script that generates the various per-int-size implementations of arithmetic mod 2^130-5, and so I had to rewrite it from scratch instead, with nothing in common with the old version beyond a handful of comments. But even that seems to have worked out nicely: the new version has much more legible descriptions of the high-level algorithms, by virtue of having a 'Multiprecision' type which wraps up the division into words, and yet Multiprecision's range analysis allows it to automatically drop out special cases such as multiplication by 5 being much easier than multiplication by another multi-word integer.
2015-12-16 14:12:26 +00:00
add_word = product >> (BIGNUM_INT_BITS - bitoffset);
Rewrite the core divide function to not use DIVMOD_WORD. DIVMOD_WORD is a portability hazard, because implementing it requires either a way to get direct access to the x86 DIV instruction or equivalent (be it inline assembler or a compiler intrinsic), or else an integer type we can use as BignumDblInt. But I'm starting to think about porting to 64-bit Visual Studio with a 64-bit BignumInt, and in that situation neither of those options will be available. I could write a piece of _out_-of-line x86-64 assembler in a separate source file and put a function call in DIVMOD_WORD, but instead I've decided to solve the problem in a more futureproof way: remove DIVMOD_WORD totally and write a division function that doesn't need it at all, solving not only today's porting headache but all future ones in this area. The new implementation works by precomputing (a good enough approximation to) the leading word of the reciprocal of the modulus, and then getting each word of quotient by multiplying by that reciprocal, where we previously used DIVMOD_WORD to divide by the leading word of the actual modulus. The reciprocal itself is computed outside internal_mod() and passed in as a parameter, allowing me to save time by only computing it once when I'm about to do a modpow. To some extent this complicates the implementation: the advantage of DIVMOD_WORD was that it yielded a full word q of quotient every time it was used, so the subtraction of q*m from the input could be done in a nicely word-aligned way. But the reciprocal multiply approach yields _almost_ a full word of quotient, because you have to make the reciprocal a bit short to avoid overflow at multiplication time. For a start, this means we have to do fractionally more iterations of the main loop; but more painfully, we can no longer depend on the subtraction of q*m at every step being word-aligned, and instead we have to be prepared to do it at any bit shift. But the flip side is that once we've implemented that, the rest of the algorithm becomes a lot less full of horrible special cases: in particular, we can now completely throw away the horribleness at all the call sites where we shift the modulus up by a fractional word to set its top bit, and then have to do a little dance to get the last few bits of quotient involving a second call to internal_mod. So there are points both for and against the new implementation in simplicity terms; but I think on balance it's more comprehensible than the old one, and a quick timing test suggests it also ends up a touch faster overall - the new testbn gets through the output of testdata/bignum.py in 4.034s where the old one took 4.392s.
2015-12-13 14:46:43 +00:00
}
}
if (quot) {
#ifdef DIVISION_DEBUG
printf("adding quotient word %#0*llx << %d\n",
BIGNUM_INT_BITS/4, (unsigned long long)q, full_bitoffset);
#endif
internal_add_shifted(quot, q, full_bitoffset);
#ifdef DIVISION_DEBUG
{
int d;
printf("now quot=0x");
for (d = quot[0]; d > 0; d--)
printf("%0*llx", BIGNUM_INT_BITS/4,
(unsigned long long)quot[d]);
printf("\n");
}
#endif
}
}
#ifdef DIVISION_DEBUG
{
int d;
printf("end main loop, a=0x");
for (d = 0; d < alen; d++)
printf("%0*llx", BIGNUM_INT_BITS/4, (unsigned long long)a[d]);
if (quot) {
printf(", quot=0x");
for (d = quot[0]; d > 0; d--)
printf("%0*llx", BIGNUM_INT_BITS/4,
(unsigned long long)quot[d]);
}
printf("\n");
}
#endif
/*
* The above loop should terminate with the remaining value in a
* being strictly less than 2*m (if a >= 2*m then we should always
* have managed to get a nonzero q word), but we can't guarantee
* that it will be strictly less than m: consider a case where the
* remainder is 1, and another where the remainder is m-1. By the
* time a contains a value that's _about m_, you clearly can't
* distinguish those cases by looking at only the top word of a -
* you have to go all the way down to the bottom before you find
* out whether it's just less or just more than m.
*
* Hence, we now do a final fixup in which we subtract one last
* copy of m, or don't, accordingly. We should never have to
* subtract more than one copy of m here.
*/
for (i = 0; i < alen; i++) {
/* Compare a with m, word by word, from the MSW down. As soon
* as we encounter a difference, we know whether we need the
* fixup. */
int mindex = mlen-alen+i;
BignumInt mword = mindex < 0 ? 0 : m[mindex];
if (a[i] < mword) {
#ifdef DIVISION_DEBUG
printf("final fixup not needed, a < m\n");
#endif
return;
} else if (a[i] > mword) {
#ifdef DIVISION_DEBUG
printf("final fixup is needed, a > m\n");
#endif
break;
}
/* If neither of those cases happened, the words are the same,
* so keep going and look at the next one. */
}
#ifdef DIVISION_DEBUG
if (i == mlen) /* if we printed neither of the above diagnostics */
printf("final fixup is needed, a == m\n");
#endif
/*
* If we got here without returning, then a >= m, so we must
* subtract m, and increment the quotient.
*/
{
Relegate BignumDblInt to an implementation detail of sshbn.h. As I mentioned in the previous commit, I'm going to want PuTTY to be able to run sensibly when compiled with 64-bit Visual Studio, including handling bignums in 64-bit chunks for speed. Unfortunately, 64-bit VS does not provide any type we can use as BignumDblInt in that situation (unlike 64-bit gcc and clang, which give us __uint128_t). The only facilities it provides are compiler intrinsics to access an add-with-carry operation and a 64x64->128 multiplication (the latter delivering its product in two separate 64-bit output chunks). Hence, here's a substantial rework of the bignum code to make it implement everything in terms of _those_ primitives, rather than depending throughout on having BignumDblInt available to use ad-hoc. BignumDblInt does still exist, for the moment, but now it's an internal implementation detail of sshbn.h, only declared inside a new set of macros implementing arithmetic primitives, and not accessible to any code outside sshbn.h (which confirms that I really did catch all uses of it and remove them). The resulting code is surprisingly nice-looking, actually. You'd expect more hassle and roundabout circumlocutions when you drop down to using a more basic set of primitive operations, but actually, in many cases it's turned out shorter to write things in terms of the new BignumADC and BignumMUL macros - because almost all my uses of BignumDblInt were implementing those operations anyway, taking several lines at a time, and now they can do each thing in just one line. The biggest headache was Poly1305: I wasn't able to find any sensible way to adapt the existing Python script that generates the various per-int-size implementations of arithmetic mod 2^130-5, and so I had to rewrite it from scratch instead, with nothing in common with the old version beyond a handful of comments. But even that seems to have worked out nicely: the new version has much more legible descriptions of the high-level algorithms, by virtue of having a 'Multiprecision' type which wraps up the division into words, and yet Multiprecision's range analysis allows it to automatically drop out special cases such as multiplication by 5 being much easier than multiplication by another multi-word integer.
2015-12-16 14:12:26 +00:00
BignumCarry c = 1;
Rewrite the core divide function to not use DIVMOD_WORD. DIVMOD_WORD is a portability hazard, because implementing it requires either a way to get direct access to the x86 DIV instruction or equivalent (be it inline assembler or a compiler intrinsic), or else an integer type we can use as BignumDblInt. But I'm starting to think about porting to 64-bit Visual Studio with a 64-bit BignumInt, and in that situation neither of those options will be available. I could write a piece of _out_-of-line x86-64 assembler in a separate source file and put a function call in DIVMOD_WORD, but instead I've decided to solve the problem in a more futureproof way: remove DIVMOD_WORD totally and write a division function that doesn't need it at all, solving not only today's porting headache but all future ones in this area. The new implementation works by precomputing (a good enough approximation to) the leading word of the reciprocal of the modulus, and then getting each word of quotient by multiplying by that reciprocal, where we previously used DIVMOD_WORD to divide by the leading word of the actual modulus. The reciprocal itself is computed outside internal_mod() and passed in as a parameter, allowing me to save time by only computing it once when I'm about to do a modpow. To some extent this complicates the implementation: the advantage of DIVMOD_WORD was that it yielded a full word q of quotient every time it was used, so the subtraction of q*m from the input could be done in a nicely word-aligned way. But the reciprocal multiply approach yields _almost_ a full word of quotient, because you have to make the reciprocal a bit short to avoid overflow at multiplication time. For a start, this means we have to do fractionally more iterations of the main loop; but more painfully, we can no longer depend on the subtraction of q*m at every step being word-aligned, and instead we have to be prepared to do it at any bit shift. But the flip side is that once we've implemented that, the rest of the algorithm becomes a lot less full of horrible special cases: in particular, we can now completely throw away the horribleness at all the call sites where we shift the modulus up by a fractional word to set its top bit, and then have to do a little dance to get the last few bits of quotient involving a second call to internal_mod. So there are points both for and against the new implementation in simplicity terms; but I think on balance it's more comprehensible than the old one, and a quick timing test suggests it also ends up a touch faster overall - the new testbn gets through the output of testdata/bignum.py in 4.034s where the old one took 4.392s.
2015-12-13 14:46:43 +00:00
for (i = alen - 1; i >= 0; i--) {
int mindex = mlen-alen+i;
BignumInt mword = mindex < 0 ? 0 : m[mindex];
Relegate BignumDblInt to an implementation detail of sshbn.h. As I mentioned in the previous commit, I'm going to want PuTTY to be able to run sensibly when compiled with 64-bit Visual Studio, including handling bignums in 64-bit chunks for speed. Unfortunately, 64-bit VS does not provide any type we can use as BignumDblInt in that situation (unlike 64-bit gcc and clang, which give us __uint128_t). The only facilities it provides are compiler intrinsics to access an add-with-carry operation and a 64x64->128 multiplication (the latter delivering its product in two separate 64-bit output chunks). Hence, here's a substantial rework of the bignum code to make it implement everything in terms of _those_ primitives, rather than depending throughout on having BignumDblInt available to use ad-hoc. BignumDblInt does still exist, for the moment, but now it's an internal implementation detail of sshbn.h, only declared inside a new set of macros implementing arithmetic primitives, and not accessible to any code outside sshbn.h (which confirms that I really did catch all uses of it and remove them). The resulting code is surprisingly nice-looking, actually. You'd expect more hassle and roundabout circumlocutions when you drop down to using a more basic set of primitive operations, but actually, in many cases it's turned out shorter to write things in terms of the new BignumADC and BignumMUL macros - because almost all my uses of BignumDblInt were implementing those operations anyway, taking several lines at a time, and now they can do each thing in just one line. The biggest headache was Poly1305: I wasn't able to find any sensible way to adapt the existing Python script that generates the various per-int-size implementations of arithmetic mod 2^130-5, and so I had to rewrite it from scratch instead, with nothing in common with the old version beyond a handful of comments. But even that seems to have worked out nicely: the new version has much more legible descriptions of the high-level algorithms, by virtue of having a 'Multiprecision' type which wraps up the division into words, and yet Multiprecision's range analysis allows it to automatically drop out special cases such as multiplication by 5 being much easier than multiplication by another multi-word integer.
2015-12-16 14:12:26 +00:00
BignumADC(a[i], c, a[i], ~mword, c);
Rewrite the core divide function to not use DIVMOD_WORD. DIVMOD_WORD is a portability hazard, because implementing it requires either a way to get direct access to the x86 DIV instruction or equivalent (be it inline assembler or a compiler intrinsic), or else an integer type we can use as BignumDblInt. But I'm starting to think about porting to 64-bit Visual Studio with a 64-bit BignumInt, and in that situation neither of those options will be available. I could write a piece of _out_-of-line x86-64 assembler in a separate source file and put a function call in DIVMOD_WORD, but instead I've decided to solve the problem in a more futureproof way: remove DIVMOD_WORD totally and write a division function that doesn't need it at all, solving not only today's porting headache but all future ones in this area. The new implementation works by precomputing (a good enough approximation to) the leading word of the reciprocal of the modulus, and then getting each word of quotient by multiplying by that reciprocal, where we previously used DIVMOD_WORD to divide by the leading word of the actual modulus. The reciprocal itself is computed outside internal_mod() and passed in as a parameter, allowing me to save time by only computing it once when I'm about to do a modpow. To some extent this complicates the implementation: the advantage of DIVMOD_WORD was that it yielded a full word q of quotient every time it was used, so the subtraction of q*m from the input could be done in a nicely word-aligned way. But the reciprocal multiply approach yields _almost_ a full word of quotient, because you have to make the reciprocal a bit short to avoid overflow at multiplication time. For a start, this means we have to do fractionally more iterations of the main loop; but more painfully, we can no longer depend on the subtraction of q*m at every step being word-aligned, and instead we have to be prepared to do it at any bit shift. But the flip side is that once we've implemented that, the rest of the algorithm becomes a lot less full of horrible special cases: in particular, we can now completely throw away the horribleness at all the call sites where we shift the modulus up by a fractional word to set its top bit, and then have to do a little dance to get the last few bits of quotient involving a second call to internal_mod. So there are points both for and against the new implementation in simplicity terms; but I think on balance it's more comprehensible than the old one, and a quick timing test suggests it also ends up a touch faster overall - the new testbn gets through the output of testdata/bignum.py in 4.034s where the old one took 4.392s.
2015-12-13 14:46:43 +00:00
}
}
Rewrite the core divide function to not use DIVMOD_WORD. DIVMOD_WORD is a portability hazard, because implementing it requires either a way to get direct access to the x86 DIV instruction or equivalent (be it inline assembler or a compiler intrinsic), or else an integer type we can use as BignumDblInt. But I'm starting to think about porting to 64-bit Visual Studio with a 64-bit BignumInt, and in that situation neither of those options will be available. I could write a piece of _out_-of-line x86-64 assembler in a separate source file and put a function call in DIVMOD_WORD, but instead I've decided to solve the problem in a more futureproof way: remove DIVMOD_WORD totally and write a division function that doesn't need it at all, solving not only today's porting headache but all future ones in this area. The new implementation works by precomputing (a good enough approximation to) the leading word of the reciprocal of the modulus, and then getting each word of quotient by multiplying by that reciprocal, where we previously used DIVMOD_WORD to divide by the leading word of the actual modulus. The reciprocal itself is computed outside internal_mod() and passed in as a parameter, allowing me to save time by only computing it once when I'm about to do a modpow. To some extent this complicates the implementation: the advantage of DIVMOD_WORD was that it yielded a full word q of quotient every time it was used, so the subtraction of q*m from the input could be done in a nicely word-aligned way. But the reciprocal multiply approach yields _almost_ a full word of quotient, because you have to make the reciprocal a bit short to avoid overflow at multiplication time. For a start, this means we have to do fractionally more iterations of the main loop; but more painfully, we can no longer depend on the subtraction of q*m at every step being word-aligned, and instead we have to be prepared to do it at any bit shift. But the flip side is that once we've implemented that, the rest of the algorithm becomes a lot less full of horrible special cases: in particular, we can now completely throw away the horribleness at all the call sites where we shift the modulus up by a fractional word to set its top bit, and then have to do a little dance to get the last few bits of quotient involving a second call to internal_mod. So there are points both for and against the new implementation in simplicity terms; but I think on balance it's more comprehensible than the old one, and a quick timing test suggests it also ends up a touch faster overall - the new testbn gets through the output of testdata/bignum.py in 4.034s where the old one took 4.392s.
2015-12-13 14:46:43 +00:00
if (quot)
internal_add_shifted(quot, 1, 0);
#ifdef DIVISION_DEBUG
{
int d;
printf("after final fixup, a=0x");
for (d = 0; d < alen; d++)
printf("%0*llx", BIGNUM_INT_BITS/4, (unsigned long long)a[d]);
if (quot) {
printf(", quot=0x");
for (d = quot[0]; d > 0; d--)
printf("%0*llx", BIGNUM_INT_BITS/4,
(unsigned long long)quot[d]);
}
printf("\n");
}
#endif
}
/*
* Compute (base ^ exp) % mod, the pedestrian way.
*/
Bignum modpow_simple(Bignum base_in, Bignum exp, Bignum mod)
{
BignumInt *a, *b, *n, *m, *scratch;
Rewrite the core divide function to not use DIVMOD_WORD. DIVMOD_WORD is a portability hazard, because implementing it requires either a way to get direct access to the x86 DIV instruction or equivalent (be it inline assembler or a compiler intrinsic), or else an integer type we can use as BignumDblInt. But I'm starting to think about porting to 64-bit Visual Studio with a 64-bit BignumInt, and in that situation neither of those options will be available. I could write a piece of _out_-of-line x86-64 assembler in a separate source file and put a function call in DIVMOD_WORD, but instead I've decided to solve the problem in a more futureproof way: remove DIVMOD_WORD totally and write a division function that doesn't need it at all, solving not only today's porting headache but all future ones in this area. The new implementation works by precomputing (a good enough approximation to) the leading word of the reciprocal of the modulus, and then getting each word of quotient by multiplying by that reciprocal, where we previously used DIVMOD_WORD to divide by the leading word of the actual modulus. The reciprocal itself is computed outside internal_mod() and passed in as a parameter, allowing me to save time by only computing it once when I'm about to do a modpow. To some extent this complicates the implementation: the advantage of DIVMOD_WORD was that it yielded a full word q of quotient every time it was used, so the subtraction of q*m from the input could be done in a nicely word-aligned way. But the reciprocal multiply approach yields _almost_ a full word of quotient, because you have to make the reciprocal a bit short to avoid overflow at multiplication time. For a start, this means we have to do fractionally more iterations of the main loop; but more painfully, we can no longer depend on the subtraction of q*m at every step being word-aligned, and instead we have to be prepared to do it at any bit shift. But the flip side is that once we've implemented that, the rest of the algorithm becomes a lot less full of horrible special cases: in particular, we can now completely throw away the horribleness at all the call sites where we shift the modulus up by a fractional word to set its top bit, and then have to do a little dance to get the last few bits of quotient involving a second call to internal_mod. So there are points both for and against the new implementation in simplicity terms; but I think on balance it's more comprehensible than the old one, and a quick timing test suggests it also ends up a touch faster overall - the new testbn gets through the output of testdata/bignum.py in 4.034s where the old one took 4.392s.
2015-12-13 14:46:43 +00:00
BignumInt recip;
int rshift;
int mlen, scratchlen, i, j;
Bignum base, result;
/*
* The most significant word of mod needs to be non-zero. It
* should already be, but let's make sure.
*/
assert(mod[mod[0]] != 0);
/*
* Make sure the base is smaller than the modulus, by reducing
* it modulo the modulus if not.
*/
base = bigmod(base_in, mod);
/* Allocate m of size mlen, copy mod to m */
/* We use big endian internally */
mlen = mod[0];
m = snewn(mlen, BignumInt);
for (j = 0; j < mlen; j++)
m[j] = mod[mod[0] - j];
/* Allocate n of size mlen, copy base to n */
n = snewn(mlen, BignumInt);
i = mlen - base[0];
for (j = 0; j < i; j++)
n[j] = 0;
for (j = 0; j < (int)base[0]; j++)
n[i + j] = base[base[0] - j];
/* Allocate a and b of size 2*mlen. Set a = 1 */
a = snewn(2 * mlen, BignumInt);
b = snewn(2 * mlen, BignumInt);
for (i = 0; i < 2 * mlen; i++)
a[i] = 0;
a[2 * mlen - 1] = 1;
/* Scratch space for multiplies */
scratchlen = mul_compute_scratch(mlen);
scratch = snewn(scratchlen, BignumInt);
/* Skip leading zero bits of exp. */
i = 0;
j = BIGNUM_INT_BITS-1;
while (i < (int)exp[0] && (exp[exp[0] - i] & ((BignumInt)1 << j)) == 0) {
j--;
if (j < 0) {
i++;
j = BIGNUM_INT_BITS-1;
}
}
Rewrite the core divide function to not use DIVMOD_WORD. DIVMOD_WORD is a portability hazard, because implementing it requires either a way to get direct access to the x86 DIV instruction or equivalent (be it inline assembler or a compiler intrinsic), or else an integer type we can use as BignumDblInt. But I'm starting to think about porting to 64-bit Visual Studio with a 64-bit BignumInt, and in that situation neither of those options will be available. I could write a piece of _out_-of-line x86-64 assembler in a separate source file and put a function call in DIVMOD_WORD, but instead I've decided to solve the problem in a more futureproof way: remove DIVMOD_WORD totally and write a division function that doesn't need it at all, solving not only today's porting headache but all future ones in this area. The new implementation works by precomputing (a good enough approximation to) the leading word of the reciprocal of the modulus, and then getting each word of quotient by multiplying by that reciprocal, where we previously used DIVMOD_WORD to divide by the leading word of the actual modulus. The reciprocal itself is computed outside internal_mod() and passed in as a parameter, allowing me to save time by only computing it once when I'm about to do a modpow. To some extent this complicates the implementation: the advantage of DIVMOD_WORD was that it yielded a full word q of quotient every time it was used, so the subtraction of q*m from the input could be done in a nicely word-aligned way. But the reciprocal multiply approach yields _almost_ a full word of quotient, because you have to make the reciprocal a bit short to avoid overflow at multiplication time. For a start, this means we have to do fractionally more iterations of the main loop; but more painfully, we can no longer depend on the subtraction of q*m at every step being word-aligned, and instead we have to be prepared to do it at any bit shift. But the flip side is that once we've implemented that, the rest of the algorithm becomes a lot less full of horrible special cases: in particular, we can now completely throw away the horribleness at all the call sites where we shift the modulus up by a fractional word to set its top bit, and then have to do a little dance to get the last few bits of quotient involving a second call to internal_mod. So there are points both for and against the new implementation in simplicity terms; but I think on balance it's more comprehensible than the old one, and a quick timing test suggests it also ends up a touch faster overall - the new testbn gets through the output of testdata/bignum.py in 4.034s where the old one took 4.392s.
2015-12-13 14:46:43 +00:00
/* Compute reciprocal of the top full word of the modulus */
{
BignumInt m0 = m[0];
rshift = bn_clz(m0);
if (rshift) {
m0 <<= rshift;
if (mlen > 1)
m0 |= m[1] >> (BIGNUM_INT_BITS - rshift);
}
recip = reciprocal_word(m0);
}
/* Main computation */
while (i < (int)exp[0]) {
while (j >= 0) {
internal_mul(a + mlen, a + mlen, b, mlen, scratch);
Rewrite the core divide function to not use DIVMOD_WORD. DIVMOD_WORD is a portability hazard, because implementing it requires either a way to get direct access to the x86 DIV instruction or equivalent (be it inline assembler or a compiler intrinsic), or else an integer type we can use as BignumDblInt. But I'm starting to think about porting to 64-bit Visual Studio with a 64-bit BignumInt, and in that situation neither of those options will be available. I could write a piece of _out_-of-line x86-64 assembler in a separate source file and put a function call in DIVMOD_WORD, but instead I've decided to solve the problem in a more futureproof way: remove DIVMOD_WORD totally and write a division function that doesn't need it at all, solving not only today's porting headache but all future ones in this area. The new implementation works by precomputing (a good enough approximation to) the leading word of the reciprocal of the modulus, and then getting each word of quotient by multiplying by that reciprocal, where we previously used DIVMOD_WORD to divide by the leading word of the actual modulus. The reciprocal itself is computed outside internal_mod() and passed in as a parameter, allowing me to save time by only computing it once when I'm about to do a modpow. To some extent this complicates the implementation: the advantage of DIVMOD_WORD was that it yielded a full word q of quotient every time it was used, so the subtraction of q*m from the input could be done in a nicely word-aligned way. But the reciprocal multiply approach yields _almost_ a full word of quotient, because you have to make the reciprocal a bit short to avoid overflow at multiplication time. For a start, this means we have to do fractionally more iterations of the main loop; but more painfully, we can no longer depend on the subtraction of q*m at every step being word-aligned, and instead we have to be prepared to do it at any bit shift. But the flip side is that once we've implemented that, the rest of the algorithm becomes a lot less full of horrible special cases: in particular, we can now completely throw away the horribleness at all the call sites where we shift the modulus up by a fractional word to set its top bit, and then have to do a little dance to get the last few bits of quotient involving a second call to internal_mod. So there are points both for and against the new implementation in simplicity terms; but I think on balance it's more comprehensible than the old one, and a quick timing test suggests it also ends up a touch faster overall - the new testbn gets through the output of testdata/bignum.py in 4.034s where the old one took 4.392s.
2015-12-13 14:46:43 +00:00
internal_mod(b, mlen * 2, m, mlen, NULL, recip, rshift);
if ((exp[exp[0] - i] & ((BignumInt)1 << j)) != 0) {
internal_mul(b + mlen, n, a, mlen, scratch);
Rewrite the core divide function to not use DIVMOD_WORD. DIVMOD_WORD is a portability hazard, because implementing it requires either a way to get direct access to the x86 DIV instruction or equivalent (be it inline assembler or a compiler intrinsic), or else an integer type we can use as BignumDblInt. But I'm starting to think about porting to 64-bit Visual Studio with a 64-bit BignumInt, and in that situation neither of those options will be available. I could write a piece of _out_-of-line x86-64 assembler in a separate source file and put a function call in DIVMOD_WORD, but instead I've decided to solve the problem in a more futureproof way: remove DIVMOD_WORD totally and write a division function that doesn't need it at all, solving not only today's porting headache but all future ones in this area. The new implementation works by precomputing (a good enough approximation to) the leading word of the reciprocal of the modulus, and then getting each word of quotient by multiplying by that reciprocal, where we previously used DIVMOD_WORD to divide by the leading word of the actual modulus. The reciprocal itself is computed outside internal_mod() and passed in as a parameter, allowing me to save time by only computing it once when I'm about to do a modpow. To some extent this complicates the implementation: the advantage of DIVMOD_WORD was that it yielded a full word q of quotient every time it was used, so the subtraction of q*m from the input could be done in a nicely word-aligned way. But the reciprocal multiply approach yields _almost_ a full word of quotient, because you have to make the reciprocal a bit short to avoid overflow at multiplication time. For a start, this means we have to do fractionally more iterations of the main loop; but more painfully, we can no longer depend on the subtraction of q*m at every step being word-aligned, and instead we have to be prepared to do it at any bit shift. But the flip side is that once we've implemented that, the rest of the algorithm becomes a lot less full of horrible special cases: in particular, we can now completely throw away the horribleness at all the call sites where we shift the modulus up by a fractional word to set its top bit, and then have to do a little dance to get the last few bits of quotient involving a second call to internal_mod. So there are points both for and against the new implementation in simplicity terms; but I think on balance it's more comprehensible than the old one, and a quick timing test suggests it also ends up a touch faster overall - the new testbn gets through the output of testdata/bignum.py in 4.034s where the old one took 4.392s.
2015-12-13 14:46:43 +00:00
internal_mod(a, mlen * 2, m, mlen, NULL, recip, rshift);
} else {
BignumInt *t;
t = a;
a = b;
b = t;
}
j--;
}
i++;
j = BIGNUM_INT_BITS-1;
}
/* Copy result to buffer */
result = newbn(mod[0]);
for (i = 0; i < mlen; i++)
result[result[0] - i] = a[i + mlen];
while (result[0] > 1 && result[result[0]] == 0)
result[0]--;
/* Free temporary arrays */
smemclr(a, 2 * mlen * sizeof(*a));
sfree(a);
smemclr(scratch, scratchlen * sizeof(*scratch));
sfree(scratch);
smemclr(b, 2 * mlen * sizeof(*b));
sfree(b);
smemclr(m, mlen * sizeof(*m));
sfree(m);
smemclr(n, mlen * sizeof(*n));
sfree(n);
freebn(base);
return result;
}
/*
* Compute (base ^ exp) % mod. Uses the Montgomery multiplication
* technique where possible, falling back to modpow_simple otherwise.
*/
Bignum modpow(Bignum base_in, Bignum exp, Bignum mod)
{
BignumInt *a, *b, *x, *n, *mninv, *scratch;
int len, scratchlen, i, j;
Bignum base, base2, r, rn, inv, result;
/*
* The most significant word of mod needs to be non-zero. It
* should already be, but let's make sure.
*/
assert(mod[mod[0]] != 0);
/*
* mod had better be odd, or we can't do Montgomery multiplication
* using a power of two at all.
*/
if (!(mod[1] & 1))
return modpow_simple(base_in, exp, mod);
/*
* Make sure the base is smaller than the modulus, by reducing
* it modulo the modulus if not.
*/
base = bigmod(base_in, mod);
/*
* Compute the inverse of n mod r, for monty_reduce. (In fact we
* want the inverse of _minus_ n mod r, but we'll sort that out
* below.)
*/
len = mod[0];
r = bn_power_2(BIGNUM_INT_BITS * len);
inv = modinv(mod, r);
assert(inv); /* cannot fail, since mod is odd and r is a power of 2 */
/*
* Multiply the base by r mod n, to get it into Montgomery
* representation.
*/
base2 = modmul(base, r, mod);
freebn(base);
base = base2;
rn = bigmod(r, mod); /* r mod n, i.e. Montgomerified 1 */
freebn(r); /* won't need this any more */
/*
* Set up internal arrays of the right lengths, in big-endian
* format, containing the base, the modulus, and the modulus's
* inverse.
*/
n = snewn(len, BignumInt);
for (j = 0; j < len; j++)
n[len - 1 - j] = mod[j + 1];
mninv = snewn(len, BignumInt);
for (j = 0; j < len; j++)
mninv[len - 1 - j] = (j < (int)inv[0] ? inv[j + 1] : 0);
freebn(inv); /* we don't need this copy of it any more */
/* Now negate mninv mod r, so it's the inverse of -n rather than +n. */
x = snewn(len, BignumInt);
for (j = 0; j < len; j++)
x[j] = 0;
internal_sub(x, mninv, mninv, len);
/* x = snewn(len, BignumInt); */ /* already done above */
for (j = 0; j < len; j++)
x[len - 1 - j] = (j < (int)base[0] ? base[j + 1] : 0);
freebn(base); /* we don't need this copy of it any more */
a = snewn(2*len, BignumInt);
b = snewn(2*len, BignumInt);
for (j = 0; j < len; j++)
a[2*len - 1 - j] = (j < (int)rn[0] ? rn[j + 1] : 0);
freebn(rn);
/* Scratch space for multiplies */
scratchlen = 3*len + mul_compute_scratch(len);
scratch = snewn(scratchlen, BignumInt);
/* Skip leading zero bits of exp. */
i = 0;
j = BIGNUM_INT_BITS-1;
while (i < (int)exp[0] && (exp[exp[0] - i] & ((BignumInt)1 << j)) == 0) {
j--;
if (j < 0) {
i++;
j = BIGNUM_INT_BITS-1;
}
}
/* Main computation */
while (i < (int)exp[0]) {
while (j >= 0) {
internal_mul(a + len, a + len, b, len, scratch);
monty_reduce(b, n, mninv, scratch, len);
if ((exp[exp[0] - i] & ((BignumInt)1 << j)) != 0) {
internal_mul(b + len, x, a, len, scratch);
monty_reduce(a, n, mninv, scratch, len);
} else {
BignumInt *t;
t = a;
a = b;
b = t;
}
j--;
}
i++;
j = BIGNUM_INT_BITS-1;
}
/*
* Final monty_reduce to get back from the adjusted Montgomery
* representation.
*/
monty_reduce(a, n, mninv, scratch, len);
/* Copy result to buffer */
result = newbn(mod[0]);
for (i = 0; i < len; i++)
result[result[0] - i] = a[i + len];
while (result[0] > 1 && result[result[0]] == 0)
result[0]--;
/* Free temporary arrays */
smemclr(scratch, scratchlen * sizeof(*scratch));
sfree(scratch);
smemclr(a, 2 * len * sizeof(*a));
sfree(a);
smemclr(b, 2 * len * sizeof(*b));
sfree(b);
smemclr(mninv, len * sizeof(*mninv));
sfree(mninv);
smemclr(n, len * sizeof(*n));
sfree(n);
smemclr(x, len * sizeof(*x));
sfree(x);
return result;
}
/*
* Compute (p * q) % mod.
* The most significant word of mod MUST be non-zero.
* We assume that the result array is the same size as the mod array.
*/
Bignum modmul(Bignum p, Bignum q, Bignum mod)
{
BignumInt *a, *n, *m, *o, *scratch;
Rewrite the core divide function to not use DIVMOD_WORD. DIVMOD_WORD is a portability hazard, because implementing it requires either a way to get direct access to the x86 DIV instruction or equivalent (be it inline assembler or a compiler intrinsic), or else an integer type we can use as BignumDblInt. But I'm starting to think about porting to 64-bit Visual Studio with a 64-bit BignumInt, and in that situation neither of those options will be available. I could write a piece of _out_-of-line x86-64 assembler in a separate source file and put a function call in DIVMOD_WORD, but instead I've decided to solve the problem in a more futureproof way: remove DIVMOD_WORD totally and write a division function that doesn't need it at all, solving not only today's porting headache but all future ones in this area. The new implementation works by precomputing (a good enough approximation to) the leading word of the reciprocal of the modulus, and then getting each word of quotient by multiplying by that reciprocal, where we previously used DIVMOD_WORD to divide by the leading word of the actual modulus. The reciprocal itself is computed outside internal_mod() and passed in as a parameter, allowing me to save time by only computing it once when I'm about to do a modpow. To some extent this complicates the implementation: the advantage of DIVMOD_WORD was that it yielded a full word q of quotient every time it was used, so the subtraction of q*m from the input could be done in a nicely word-aligned way. But the reciprocal multiply approach yields _almost_ a full word of quotient, because you have to make the reciprocal a bit short to avoid overflow at multiplication time. For a start, this means we have to do fractionally more iterations of the main loop; but more painfully, we can no longer depend on the subtraction of q*m at every step being word-aligned, and instead we have to be prepared to do it at any bit shift. But the flip side is that once we've implemented that, the rest of the algorithm becomes a lot less full of horrible special cases: in particular, we can now completely throw away the horribleness at all the call sites where we shift the modulus up by a fractional word to set its top bit, and then have to do a little dance to get the last few bits of quotient involving a second call to internal_mod. So there are points both for and against the new implementation in simplicity terms; but I think on balance it's more comprehensible than the old one, and a quick timing test suggests it also ends up a touch faster overall - the new testbn gets through the output of testdata/bignum.py in 4.034s where the old one took 4.392s.
2015-12-13 14:46:43 +00:00
BignumInt recip;
int rshift, scratchlen;
int pqlen, mlen, rlen, i, j;
Bignum result;
/*
* The most significant word of mod needs to be non-zero. It
* should already be, but let's make sure.
*/
assert(mod[mod[0]] != 0);
/* Allocate m of size mlen, copy mod to m */
/* We use big endian internally */
mlen = mod[0];
m = snewn(mlen, BignumInt);
for (j = 0; j < mlen; j++)
m[j] = mod[mod[0] - j];
pqlen = (p[0] > q[0] ? p[0] : q[0]);
/*
* Make sure that we're allowing enough space. The shifting below
* will underflow the vectors we allocate if pqlen is too small.
*/
if (2*pqlen <= mlen)
pqlen = mlen/2 + 1;
/* Allocate n of size pqlen, copy p to n */
n = snewn(pqlen, BignumInt);
i = pqlen - p[0];
for (j = 0; j < i; j++)
n[j] = 0;
for (j = 0; j < (int)p[0]; j++)
n[i + j] = p[p[0] - j];
/* Allocate o of size pqlen, copy q to o */
o = snewn(pqlen, BignumInt);
i = pqlen - q[0];
for (j = 0; j < i; j++)
o[j] = 0;
for (j = 0; j < (int)q[0]; j++)
o[i + j] = q[q[0] - j];
/* Allocate a of size 2*pqlen for result */
a = snewn(2 * pqlen, BignumInt);
/* Scratch space for multiplies */
scratchlen = mul_compute_scratch(pqlen);
scratch = snewn(scratchlen, BignumInt);
Rewrite the core divide function to not use DIVMOD_WORD. DIVMOD_WORD is a portability hazard, because implementing it requires either a way to get direct access to the x86 DIV instruction or equivalent (be it inline assembler or a compiler intrinsic), or else an integer type we can use as BignumDblInt. But I'm starting to think about porting to 64-bit Visual Studio with a 64-bit BignumInt, and in that situation neither of those options will be available. I could write a piece of _out_-of-line x86-64 assembler in a separate source file and put a function call in DIVMOD_WORD, but instead I've decided to solve the problem in a more futureproof way: remove DIVMOD_WORD totally and write a division function that doesn't need it at all, solving not only today's porting headache but all future ones in this area. The new implementation works by precomputing (a good enough approximation to) the leading word of the reciprocal of the modulus, and then getting each word of quotient by multiplying by that reciprocal, where we previously used DIVMOD_WORD to divide by the leading word of the actual modulus. The reciprocal itself is computed outside internal_mod() and passed in as a parameter, allowing me to save time by only computing it once when I'm about to do a modpow. To some extent this complicates the implementation: the advantage of DIVMOD_WORD was that it yielded a full word q of quotient every time it was used, so the subtraction of q*m from the input could be done in a nicely word-aligned way. But the reciprocal multiply approach yields _almost_ a full word of quotient, because you have to make the reciprocal a bit short to avoid overflow at multiplication time. For a start, this means we have to do fractionally more iterations of the main loop; but more painfully, we can no longer depend on the subtraction of q*m at every step being word-aligned, and instead we have to be prepared to do it at any bit shift. But the flip side is that once we've implemented that, the rest of the algorithm becomes a lot less full of horrible special cases: in particular, we can now completely throw away the horribleness at all the call sites where we shift the modulus up by a fractional word to set its top bit, and then have to do a little dance to get the last few bits of quotient involving a second call to internal_mod. So there are points both for and against the new implementation in simplicity terms; but I think on balance it's more comprehensible than the old one, and a quick timing test suggests it also ends up a touch faster overall - the new testbn gets through the output of testdata/bignum.py in 4.034s where the old one took 4.392s.
2015-12-13 14:46:43 +00:00
/* Compute reciprocal of the top full word of the modulus */
{
BignumInt m0 = m[0];
rshift = bn_clz(m0);
if (rshift) {
m0 <<= rshift;
if (mlen > 1)
m0 |= m[1] >> (BIGNUM_INT_BITS - rshift);
}
recip = reciprocal_word(m0);
}
/* Main computation */
internal_mul(n, o, a, pqlen, scratch);
Rewrite the core divide function to not use DIVMOD_WORD. DIVMOD_WORD is a portability hazard, because implementing it requires either a way to get direct access to the x86 DIV instruction or equivalent (be it inline assembler or a compiler intrinsic), or else an integer type we can use as BignumDblInt. But I'm starting to think about porting to 64-bit Visual Studio with a 64-bit BignumInt, and in that situation neither of those options will be available. I could write a piece of _out_-of-line x86-64 assembler in a separate source file and put a function call in DIVMOD_WORD, but instead I've decided to solve the problem in a more futureproof way: remove DIVMOD_WORD totally and write a division function that doesn't need it at all, solving not only today's porting headache but all future ones in this area. The new implementation works by precomputing (a good enough approximation to) the leading word of the reciprocal of the modulus, and then getting each word of quotient by multiplying by that reciprocal, where we previously used DIVMOD_WORD to divide by the leading word of the actual modulus. The reciprocal itself is computed outside internal_mod() and passed in as a parameter, allowing me to save time by only computing it once when I'm about to do a modpow. To some extent this complicates the implementation: the advantage of DIVMOD_WORD was that it yielded a full word q of quotient every time it was used, so the subtraction of q*m from the input could be done in a nicely word-aligned way. But the reciprocal multiply approach yields _almost_ a full word of quotient, because you have to make the reciprocal a bit short to avoid overflow at multiplication time. For a start, this means we have to do fractionally more iterations of the main loop; but more painfully, we can no longer depend on the subtraction of q*m at every step being word-aligned, and instead we have to be prepared to do it at any bit shift. But the flip side is that once we've implemented that, the rest of the algorithm becomes a lot less full of horrible special cases: in particular, we can now completely throw away the horribleness at all the call sites where we shift the modulus up by a fractional word to set its top bit, and then have to do a little dance to get the last few bits of quotient involving a second call to internal_mod. So there are points both for and against the new implementation in simplicity terms; but I think on balance it's more comprehensible than the old one, and a quick timing test suggests it also ends up a touch faster overall - the new testbn gets through the output of testdata/bignum.py in 4.034s where the old one took 4.392s.
2015-12-13 14:46:43 +00:00
internal_mod(a, pqlen * 2, m, mlen, NULL, recip, rshift);
/* Copy result to buffer */
rlen = (mlen < pqlen * 2 ? mlen : pqlen * 2);
result = newbn(rlen);
for (i = 0; i < rlen; i++)
result[result[0] - i] = a[i + 2 * pqlen - rlen];
while (result[0] > 1 && result[result[0]] == 0)
result[0]--;
/* Free temporary arrays */
smemclr(scratch, scratchlen * sizeof(*scratch));
sfree(scratch);
smemclr(a, 2 * pqlen * sizeof(*a));
sfree(a);
smemclr(m, mlen * sizeof(*m));
sfree(m);
smemclr(n, pqlen * sizeof(*n));
sfree(n);
smemclr(o, pqlen * sizeof(*o));
sfree(o);
return result;
}
Bignum modsub(const Bignum a, const Bignum b, const Bignum n)
{
Bignum a1, b1, ret;
if (bignum_cmp(a, n) >= 0) a1 = bigmod(a, n);
else a1 = a;
if (bignum_cmp(b, n) >= 0) b1 = bigmod(b, n);
else b1 = b;
if (bignum_cmp(a1, b1) >= 0) /* a >= b */
{
ret = bigsub(a1, b1);
}
else
{
/* Handle going round the corner of the modulus without having
* negative support in Bignum */
Bignum tmp = bigsub(n, b1);
assert(tmp);
ret = bigadd(tmp, a1);
freebn(tmp);
}
if (a != a1) freebn(a1);
if (b != b1) freebn(b1);
return ret;
}
/*
* Compute p % mod.
* The most significant word of mod MUST be non-zero.
* We assume that the result array is the same size as the mod array.
* We optionally write out a quotient if `quotient' is non-NULL.
* We can avoid writing out the result if `result' is NULL.
*/
static void bigdivmod(Bignum p, Bignum mod, Bignum result, Bignum quotient)
{
BignumInt *n, *m;
Rewrite the core divide function to not use DIVMOD_WORD. DIVMOD_WORD is a portability hazard, because implementing it requires either a way to get direct access to the x86 DIV instruction or equivalent (be it inline assembler or a compiler intrinsic), or else an integer type we can use as BignumDblInt. But I'm starting to think about porting to 64-bit Visual Studio with a 64-bit BignumInt, and in that situation neither of those options will be available. I could write a piece of _out_-of-line x86-64 assembler in a separate source file and put a function call in DIVMOD_WORD, but instead I've decided to solve the problem in a more futureproof way: remove DIVMOD_WORD totally and write a division function that doesn't need it at all, solving not only today's porting headache but all future ones in this area. The new implementation works by precomputing (a good enough approximation to) the leading word of the reciprocal of the modulus, and then getting each word of quotient by multiplying by that reciprocal, where we previously used DIVMOD_WORD to divide by the leading word of the actual modulus. The reciprocal itself is computed outside internal_mod() and passed in as a parameter, allowing me to save time by only computing it once when I'm about to do a modpow. To some extent this complicates the implementation: the advantage of DIVMOD_WORD was that it yielded a full word q of quotient every time it was used, so the subtraction of q*m from the input could be done in a nicely word-aligned way. But the reciprocal multiply approach yields _almost_ a full word of quotient, because you have to make the reciprocal a bit short to avoid overflow at multiplication time. For a start, this means we have to do fractionally more iterations of the main loop; but more painfully, we can no longer depend on the subtraction of q*m at every step being word-aligned, and instead we have to be prepared to do it at any bit shift. But the flip side is that once we've implemented that, the rest of the algorithm becomes a lot less full of horrible special cases: in particular, we can now completely throw away the horribleness at all the call sites where we shift the modulus up by a fractional word to set its top bit, and then have to do a little dance to get the last few bits of quotient involving a second call to internal_mod. So there are points both for and against the new implementation in simplicity terms; but I think on balance it's more comprehensible than the old one, and a quick timing test suggests it also ends up a touch faster overall - the new testbn gets through the output of testdata/bignum.py in 4.034s where the old one took 4.392s.
2015-12-13 14:46:43 +00:00
BignumInt recip;
int rshift;
int plen, mlen, i, j;
/*
* The most significant word of mod needs to be non-zero. It
* should already be, but let's make sure.
*/
assert(mod[mod[0]] != 0);
/* Allocate m of size mlen, copy mod to m */
/* We use big endian internally */
mlen = mod[0];
m = snewn(mlen, BignumInt);
for (j = 0; j < mlen; j++)
m[j] = mod[mod[0] - j];
plen = p[0];
/* Ensure plen > mlen */
if (plen <= mlen)
plen = mlen + 1;
/* Allocate n of size plen, copy p to n */
n = snewn(plen, BignumInt);
for (j = 0; j < plen; j++)
n[j] = 0;
for (j = 1; j <= (int)p[0]; j++)
n[plen - j] = p[j];
Rewrite the core divide function to not use DIVMOD_WORD. DIVMOD_WORD is a portability hazard, because implementing it requires either a way to get direct access to the x86 DIV instruction or equivalent (be it inline assembler or a compiler intrinsic), or else an integer type we can use as BignumDblInt. But I'm starting to think about porting to 64-bit Visual Studio with a 64-bit BignumInt, and in that situation neither of those options will be available. I could write a piece of _out_-of-line x86-64 assembler in a separate source file and put a function call in DIVMOD_WORD, but instead I've decided to solve the problem in a more futureproof way: remove DIVMOD_WORD totally and write a division function that doesn't need it at all, solving not only today's porting headache but all future ones in this area. The new implementation works by precomputing (a good enough approximation to) the leading word of the reciprocal of the modulus, and then getting each word of quotient by multiplying by that reciprocal, where we previously used DIVMOD_WORD to divide by the leading word of the actual modulus. The reciprocal itself is computed outside internal_mod() and passed in as a parameter, allowing me to save time by only computing it once when I'm about to do a modpow. To some extent this complicates the implementation: the advantage of DIVMOD_WORD was that it yielded a full word q of quotient every time it was used, so the subtraction of q*m from the input could be done in a nicely word-aligned way. But the reciprocal multiply approach yields _almost_ a full word of quotient, because you have to make the reciprocal a bit short to avoid overflow at multiplication time. For a start, this means we have to do fractionally more iterations of the main loop; but more painfully, we can no longer depend on the subtraction of q*m at every step being word-aligned, and instead we have to be prepared to do it at any bit shift. But the flip side is that once we've implemented that, the rest of the algorithm becomes a lot less full of horrible special cases: in particular, we can now completely throw away the horribleness at all the call sites where we shift the modulus up by a fractional word to set its top bit, and then have to do a little dance to get the last few bits of quotient involving a second call to internal_mod. So there are points both for and against the new implementation in simplicity terms; but I think on balance it's more comprehensible than the old one, and a quick timing test suggests it also ends up a touch faster overall - the new testbn gets through the output of testdata/bignum.py in 4.034s where the old one took 4.392s.
2015-12-13 14:46:43 +00:00
/* Compute reciprocal of the top full word of the modulus */
{
BignumInt m0 = m[0];
rshift = bn_clz(m0);
if (rshift) {
m0 <<= rshift;
if (mlen > 1)
m0 |= m[1] >> (BIGNUM_INT_BITS - rshift);
}
recip = reciprocal_word(m0);
}
Rewrite the core divide function to not use DIVMOD_WORD. DIVMOD_WORD is a portability hazard, because implementing it requires either a way to get direct access to the x86 DIV instruction or equivalent (be it inline assembler or a compiler intrinsic), or else an integer type we can use as BignumDblInt. But I'm starting to think about porting to 64-bit Visual Studio with a 64-bit BignumInt, and in that situation neither of those options will be available. I could write a piece of _out_-of-line x86-64 assembler in a separate source file and put a function call in DIVMOD_WORD, but instead I've decided to solve the problem in a more futureproof way: remove DIVMOD_WORD totally and write a division function that doesn't need it at all, solving not only today's porting headache but all future ones in this area. The new implementation works by precomputing (a good enough approximation to) the leading word of the reciprocal of the modulus, and then getting each word of quotient by multiplying by that reciprocal, where we previously used DIVMOD_WORD to divide by the leading word of the actual modulus. The reciprocal itself is computed outside internal_mod() and passed in as a parameter, allowing me to save time by only computing it once when I'm about to do a modpow. To some extent this complicates the implementation: the advantage of DIVMOD_WORD was that it yielded a full word q of quotient every time it was used, so the subtraction of q*m from the input could be done in a nicely word-aligned way. But the reciprocal multiply approach yields _almost_ a full word of quotient, because you have to make the reciprocal a bit short to avoid overflow at multiplication time. For a start, this means we have to do fractionally more iterations of the main loop; but more painfully, we can no longer depend on the subtraction of q*m at every step being word-aligned, and instead we have to be prepared to do it at any bit shift. But the flip side is that once we've implemented that, the rest of the algorithm becomes a lot less full of horrible special cases: in particular, we can now completely throw away the horribleness at all the call sites where we shift the modulus up by a fractional word to set its top bit, and then have to do a little dance to get the last few bits of quotient involving a second call to internal_mod. So there are points both for and against the new implementation in simplicity terms; but I think on balance it's more comprehensible than the old one, and a quick timing test suggests it also ends up a touch faster overall - the new testbn gets through the output of testdata/bignum.py in 4.034s where the old one took 4.392s.
2015-12-13 14:46:43 +00:00
/* Main computation */
internal_mod(n, plen, m, mlen, quotient, recip, rshift);
/* Copy result to buffer */
if (result) {
for (i = 1; i <= (int)result[0]; i++) {
int j = plen - i;
result[i] = j >= 0 ? n[j] : 0;
}
}
/* Free temporary arrays */
smemclr(m, mlen * sizeof(*m));
sfree(m);
smemclr(n, plen * sizeof(*n));
sfree(n);
}
/*
* Decrement a number.
*/
void decbn(Bignum bn)
{
int i = 1;
while (i < (int)bn[0] && bn[i] == 0)
bn[i++] = BIGNUM_INT_MASK;
bn[i]--;
}
Bignum bignum_from_bytes(const void *vdata, int nbytes)
{
const unsigned char *data = (const unsigned char *)vdata;
Bignum result;
int w, i;
assert(nbytes >= 0 && nbytes < INT_MAX/8);
w = (nbytes + BIGNUM_INT_BYTES - 1) / BIGNUM_INT_BYTES; /* bytes->words */
result = newbn(w);
for (i = 1; i <= w; i++)
result[i] = 0;
for (i = nbytes; i--;) {
unsigned char byte = *data++;
result[1 + i / BIGNUM_INT_BYTES] |=
(BignumInt)byte << (8*i % BIGNUM_INT_BITS);
}
bn_restore_invariant(result);
return result;
}
Bignum bignum_from_bytes_le(const void *vdata, int nbytes)
{
const unsigned char *data = (const unsigned char *)vdata;
Bignum result;
int w, i;
assert(nbytes >= 0 && nbytes < INT_MAX/8);
w = (nbytes + BIGNUM_INT_BYTES - 1) / BIGNUM_INT_BYTES; /* bytes->words */
result = newbn(w);
for (i = 1; i <= w; i++)
result[i] = 0;
for (i = 0; i < nbytes; ++i) {
unsigned char byte = *data++;
result[1 + i / BIGNUM_INT_BYTES] |=
(BignumInt)byte << (8*i % BIGNUM_INT_BITS);
}
bn_restore_invariant(result);
return result;
}
2015-05-12 11:10:42 +00:00
Bignum bignum_from_decimal(const char *decimal)
{
Bignum result = copybn(Zero);
while (*decimal) {
Bignum tmp, tmp2;
if (!isdigit((unsigned char)*decimal)) {
freebn(result);
return 0;
}
tmp = bigmul(result, Ten);
tmp2 = bignum_from_long(*decimal - '0');
freebn(result);
2015-05-12 11:10:42 +00:00
result = bigadd(tmp, tmp2);
freebn(tmp);
freebn(tmp2);
decimal++;
}
return result;
}
Bignum bignum_random_in_range(const Bignum lower, const Bignum upper)
{
Bignum ret = NULL;
unsigned char *bytes;
int upper_len = bignum_bitcount(upper);
int upper_bytes = upper_len / 8;
int upper_bits = upper_len % 8;
if (upper_bits) ++upper_bytes;
bytes = snewn(upper_bytes, unsigned char);
do {
int i;
if (ret) freebn(ret);
for (i = 0; i < upper_bytes; ++i)
{
bytes[i] = (unsigned char)random_byte();
}
/* Mask the top to reduce failure rate to 50/50 */
if (upper_bits)
{
bytes[i - 1] &= 0xFF >> (8 - upper_bits);
}
ret = bignum_from_bytes(bytes, upper_bytes);
} while (bignum_cmp(ret, lower) < 0 || bignum_cmp(ret, upper) > 0);
smemclr(bytes, upper_bytes);
sfree(bytes);
return ret;
}
/*
* Return the bit count of a bignum.
*/
int bignum_bitcount(Bignum bn)
{
int bitcount = bn[0] * BIGNUM_INT_BITS - 1;
while (bitcount >= 0
&& (bn[bitcount / BIGNUM_INT_BITS + 1] >> (bitcount % BIGNUM_INT_BITS)) == 0) bitcount--;
return bitcount + 1;
}
/*
* Return a byte from a bignum; 0 is least significant, etc.
*/
int bignum_byte(Bignum bn, int i)
{
if (i < 0 || i >= (int)(BIGNUM_INT_BYTES * bn[0]))
return 0; /* beyond the end */
else
return (bn[i / BIGNUM_INT_BYTES + 1] >>
((i % BIGNUM_INT_BYTES)*8)) & 0xFF;
}
/*
* Return a bit from a bignum; 0 is least significant, etc.
*/
int bignum_bit(Bignum bn, int i)
{
if (i < 0 || i >= (int)(BIGNUM_INT_BITS * bn[0]))
return 0; /* beyond the end */
else
return (bn[i / BIGNUM_INT_BITS + 1] >> (i % BIGNUM_INT_BITS)) & 1;
}
/*
* Set a bit in a bignum; 0 is least significant, etc.
*/
void bignum_set_bit(Bignum bn, int bitnum, int value)
{
if (bitnum < 0 || bitnum >= (int)(BIGNUM_INT_BITS * bn[0])) {
if (value) abort(); /* beyond the end */
} else {
int v = bitnum / BIGNUM_INT_BITS + 1;
BignumInt mask = (BignumInt)1 << (bitnum % BIGNUM_INT_BITS);
if (value)
bn[v] |= mask;
else
bn[v] &= ~mask;
}
}
New centralised binary-data marshalling system. I've finally got tired of all the code throughout PuTTY that repeats the same logic about how to format the SSH binary primitives like uint32, string, mpint. We've got reasonably organised code in ssh.c that appends things like that to 'struct Packet'; something similar in sftp.c which repeats a lot of the work; utility functions in various places to format an mpint to feed to one or another hash function; and no end of totally ad-hoc stuff in functions like public key blob formatters which actually have to _count up_ the size of data painstakingly, then malloc exactly that much and mess about with PUT_32BIT. It's time to bring all of that into one place, and stop repeating myself in error-prone ways everywhere. The new marshal.h defines a system in which I centralise all the actual marshalling functions, and then layer a touch of C macro trickery on top to allow me to (look as if I) pass a wide range of different types to those functions, as long as the target type has been set up in the right way to have a write() function. This commit adds the new header and source file, and sets up some general centralised types (strbuf and the various hash-function contexts like SHA_State), but doesn't use the new calls for anything yet. (I've also renamed some internal functions in import.c which were using the same names that I've just defined macros over. That won't last long - those functions are going to go away soon, so the changed names are strictly temporary.)
2018-05-24 08:17:13 +00:00
void BinarySink_put_mp_ssh1(BinarySink *bs, Bignum bn)
{
int bits = bignum_bitcount(bn);
int bytes = (bits + 7) / 8;
New centralised binary-data marshalling system. I've finally got tired of all the code throughout PuTTY that repeats the same logic about how to format the SSH binary primitives like uint32, string, mpint. We've got reasonably organised code in ssh.c that appends things like that to 'struct Packet'; something similar in sftp.c which repeats a lot of the work; utility functions in various places to format an mpint to feed to one or another hash function; and no end of totally ad-hoc stuff in functions like public key blob formatters which actually have to _count up_ the size of data painstakingly, then malloc exactly that much and mess about with PUT_32BIT. It's time to bring all of that into one place, and stop repeating myself in error-prone ways everywhere. The new marshal.h defines a system in which I centralise all the actual marshalling functions, and then layer a touch of C macro trickery on top to allow me to (look as if I) pass a wide range of different types to those functions, as long as the target type has been set up in the right way to have a write() function. This commit adds the new header and source file, and sets up some general centralised types (strbuf and the various hash-function contexts like SHA_State), but doesn't use the new calls for anything yet. (I've also renamed some internal functions in import.c which were using the same names that I've just defined macros over. That won't last long - those functions are going to go away soon, so the changed names are strictly temporary.)
2018-05-24 08:17:13 +00:00
int i;
put_uint16(bs, bits);
for (i = bytes; i--;)
New centralised binary-data marshalling system. I've finally got tired of all the code throughout PuTTY that repeats the same logic about how to format the SSH binary primitives like uint32, string, mpint. We've got reasonably organised code in ssh.c that appends things like that to 'struct Packet'; something similar in sftp.c which repeats a lot of the work; utility functions in various places to format an mpint to feed to one or another hash function; and no end of totally ad-hoc stuff in functions like public key blob formatters which actually have to _count up_ the size of data painstakingly, then malloc exactly that much and mess about with PUT_32BIT. It's time to bring all of that into one place, and stop repeating myself in error-prone ways everywhere. The new marshal.h defines a system in which I centralise all the actual marshalling functions, and then layer a touch of C macro trickery on top to allow me to (look as if I) pass a wide range of different types to those functions, as long as the target type has been set up in the right way to have a write() function. This commit adds the new header and source file, and sets up some general centralised types (strbuf and the various hash-function contexts like SHA_State), but doesn't use the new calls for anything yet. (I've also renamed some internal functions in import.c which were using the same names that I've just defined macros over. That won't last long - those functions are going to go away soon, so the changed names are strictly temporary.)
2018-05-24 08:17:13 +00:00
put_byte(bs, bignum_byte(bn, i));
}
void BinarySink_put_mp_ssh2(BinarySink *bs, Bignum bn)
{
int bytes = (bignum_bitcount(bn) + 8) / 8;
int i;
put_uint32(bs, bytes);
for (i = bytes; i--;)
put_byte(bs, bignum_byte(bn, i));
}
Bignum BinarySource_get_mp_ssh1(BinarySource *src)
{
unsigned bitc = get_uint16(src);
ptrlen bytes = get_data(src, (bitc + 7) / 8);
if (get_err(src)) {
return bignum_from_long(0);
} else {
Bignum toret = bignum_from_bytes(bytes.ptr, bytes.len);
if (bignum_bitcount(toret) != bitc) {
src->err = BSE_INVALID;
freebn(toret);
toret = bignum_from_long(0);
}
return toret;
}
}
Bignum BinarySource_get_mp_ssh2(BinarySource *src)
{
ptrlen bytes = get_string(src);
if (get_err(src)) {
return bignum_from_long(0);
} else {
const unsigned char *p = bytes.ptr;
if ((bytes.len > 0 &&
((p[0] & 0x80) ||
(p[0] == 0 && (bytes.len <= 1 || !(p[1] & 0x80)))))) {
src->err = BSE_INVALID;
return bignum_from_long(0);
}
return bignum_from_bytes(bytes.ptr, bytes.len);
}
}
/*
* Compare two bignums. Returns like strcmp.
*/
int bignum_cmp(Bignum a, Bignum b)
{
int amax = a[0], bmax = b[0];
int i;
/* Annoyingly we have two representations of zero */
if (amax == 1 && a[amax] == 0)
amax = 0;
if (bmax == 1 && b[bmax] == 0)
bmax = 0;
assert(amax == 0 || a[amax] != 0);
assert(bmax == 0 || b[bmax] != 0);
i = (amax > bmax ? amax : bmax);
while (i) {
BignumInt aval = (i > amax ? 0 : a[i]);
BignumInt bval = (i > bmax ? 0 : b[i]);
if (aval < bval)
return -1;
if (aval > bval)
return +1;
i--;
}
return 0;
}
/*
* Right-shift one bignum to form another.
*/
Bignum bignum_rshift(Bignum a, int shift)
{
Bignum ret;
int i, shiftw, shiftb, shiftbb, bits;
BignumInt ai, ai1;
assert(shift >= 0);
bits = bignum_bitcount(a) - shift;
ret = newbn((bits + BIGNUM_INT_BITS - 1) / BIGNUM_INT_BITS);
if (ret) {
shiftw = shift / BIGNUM_INT_BITS;
shiftb = shift % BIGNUM_INT_BITS;
shiftbb = BIGNUM_INT_BITS - shiftb;
ai1 = a[shiftw + 1];
for (i = 1; i <= (int)ret[0]; i++) {
ai = ai1;
ai1 = (i + shiftw + 1 <= (int)a[0] ? a[i + shiftw + 1] : 0);
ret[i] = ((ai >> shiftb) | (ai1 << shiftbb)) & BIGNUM_INT_MASK;
}
}
return ret;
}
/*
* Left-shift one bignum to form another.
*/
Bignum bignum_lshift(Bignum a, int shift)
{
Bignum ret;
int bits, shiftWords, shiftBits;
assert(shift >= 0);
bits = bignum_bitcount(a) + shift;
ret = newbn((bits + BIGNUM_INT_BITS - 1) / BIGNUM_INT_BITS);
shiftWords = shift / BIGNUM_INT_BITS;
shiftBits = shift % BIGNUM_INT_BITS;
if (shiftBits == 0)
{
memcpy(&ret[1 + shiftWords], &a[1], sizeof(BignumInt) * a[0]);
}
else
{
int i;
BignumInt carry = 0;
/* Remember that Bignum[0] is length, so add 1 */
for (i = shiftWords + 1; i < ((int)a[0]) + shiftWords + 1; ++i)
{
BignumInt from = a[i - shiftWords];
ret[i] = (from << shiftBits) | carry;
carry = from >> (BIGNUM_INT_BITS - shiftBits);
}
if (carry) ret[i] = carry;
}
return ret;
}
/*
* Non-modular multiplication and addition.
*/
Bignum bigmuladd(Bignum a, Bignum b, Bignum addend)
{
int alen = a[0], blen = b[0];
int mlen = (alen > blen ? alen : blen);
int rlen, i, maxspot;
int wslen;
BignumInt *workspace;
Bignum ret;
/* mlen space for a, mlen space for b, 2*mlen for result,
* plus scratch space for multiplication */
wslen = mlen * 4 + mul_compute_scratch(mlen);
workspace = snewn(wslen, BignumInt);
for (i = 0; i < mlen; i++) {
workspace[0 * mlen + i] = (mlen - i <= (int)a[0] ? a[mlen - i] : 0);
workspace[1 * mlen + i] = (mlen - i <= (int)b[0] ? b[mlen - i] : 0);
}
internal_mul(workspace + 0 * mlen, workspace + 1 * mlen,
workspace + 2 * mlen, mlen, workspace + 4 * mlen);
/* now just copy the result back */
rlen = alen + blen + 1;
if (addend && rlen <= (int)addend[0])
rlen = addend[0] + 1;
ret = newbn(rlen);
maxspot = 0;
for (i = 1; i <= (int)ret[0]; i++) {
ret[i] = (i <= 2 * mlen ? workspace[4 * mlen - i] : 0);
if (ret[i] != 0)
maxspot = i;
}
ret[0] = maxspot;
/* now add in the addend, if any */
if (addend) {
Relegate BignumDblInt to an implementation detail of sshbn.h. As I mentioned in the previous commit, I'm going to want PuTTY to be able to run sensibly when compiled with 64-bit Visual Studio, including handling bignums in 64-bit chunks for speed. Unfortunately, 64-bit VS does not provide any type we can use as BignumDblInt in that situation (unlike 64-bit gcc and clang, which give us __uint128_t). The only facilities it provides are compiler intrinsics to access an add-with-carry operation and a 64x64->128 multiplication (the latter delivering its product in two separate 64-bit output chunks). Hence, here's a substantial rework of the bignum code to make it implement everything in terms of _those_ primitives, rather than depending throughout on having BignumDblInt available to use ad-hoc. BignumDblInt does still exist, for the moment, but now it's an internal implementation detail of sshbn.h, only declared inside a new set of macros implementing arithmetic primitives, and not accessible to any code outside sshbn.h (which confirms that I really did catch all uses of it and remove them). The resulting code is surprisingly nice-looking, actually. You'd expect more hassle and roundabout circumlocutions when you drop down to using a more basic set of primitive operations, but actually, in many cases it's turned out shorter to write things in terms of the new BignumADC and BignumMUL macros - because almost all my uses of BignumDblInt were implementing those operations anyway, taking several lines at a time, and now they can do each thing in just one line. The biggest headache was Poly1305: I wasn't able to find any sensible way to adapt the existing Python script that generates the various per-int-size implementations of arithmetic mod 2^130-5, and so I had to rewrite it from scratch instead, with nothing in common with the old version beyond a handful of comments. But even that seems to have worked out nicely: the new version has much more legible descriptions of the high-level algorithms, by virtue of having a 'Multiprecision' type which wraps up the division into words, and yet Multiprecision's range analysis allows it to automatically drop out special cases such as multiplication by 5 being much easier than multiplication by another multi-word integer.
2015-12-16 14:12:26 +00:00
BignumCarry carry = 0;
for (i = 1; i <= rlen; i++) {
Relegate BignumDblInt to an implementation detail of sshbn.h. As I mentioned in the previous commit, I'm going to want PuTTY to be able to run sensibly when compiled with 64-bit Visual Studio, including handling bignums in 64-bit chunks for speed. Unfortunately, 64-bit VS does not provide any type we can use as BignumDblInt in that situation (unlike 64-bit gcc and clang, which give us __uint128_t). The only facilities it provides are compiler intrinsics to access an add-with-carry operation and a 64x64->128 multiplication (the latter delivering its product in two separate 64-bit output chunks). Hence, here's a substantial rework of the bignum code to make it implement everything in terms of _those_ primitives, rather than depending throughout on having BignumDblInt available to use ad-hoc. BignumDblInt does still exist, for the moment, but now it's an internal implementation detail of sshbn.h, only declared inside a new set of macros implementing arithmetic primitives, and not accessible to any code outside sshbn.h (which confirms that I really did catch all uses of it and remove them). The resulting code is surprisingly nice-looking, actually. You'd expect more hassle and roundabout circumlocutions when you drop down to using a more basic set of primitive operations, but actually, in many cases it's turned out shorter to write things in terms of the new BignumADC and BignumMUL macros - because almost all my uses of BignumDblInt were implementing those operations anyway, taking several lines at a time, and now they can do each thing in just one line. The biggest headache was Poly1305: I wasn't able to find any sensible way to adapt the existing Python script that generates the various per-int-size implementations of arithmetic mod 2^130-5, and so I had to rewrite it from scratch instead, with nothing in common with the old version beyond a handful of comments. But even that seems to have worked out nicely: the new version has much more legible descriptions of the high-level algorithms, by virtue of having a 'Multiprecision' type which wraps up the division into words, and yet Multiprecision's range analysis allows it to automatically drop out special cases such as multiplication by 5 being much easier than multiplication by another multi-word integer.
2015-12-16 14:12:26 +00:00
BignumInt retword = (i <= (int)ret[0] ? ret[i] : 0);
BignumInt addword = (i <= (int)addend[0] ? addend[i] : 0);
BignumADC(ret[i], carry, retword, addword, carry);
if (ret[i] != 0 && i > maxspot)
maxspot = i;
}
}
ret[0] = maxspot;
smemclr(workspace, wslen * sizeof(*workspace));
sfree(workspace);
return ret;
}
/*
* Non-modular multiplication.
*/
Bignum bigmul(Bignum a, Bignum b)
{
return bigmuladd(a, b, NULL);
}
/*
* Simple addition.
*/
Bignum bigadd(Bignum a, Bignum b)
{
int alen = a[0], blen = b[0];
int rlen = (alen > blen ? alen : blen) + 1;
int i, maxspot;
Bignum ret;
Relegate BignumDblInt to an implementation detail of sshbn.h. As I mentioned in the previous commit, I'm going to want PuTTY to be able to run sensibly when compiled with 64-bit Visual Studio, including handling bignums in 64-bit chunks for speed. Unfortunately, 64-bit VS does not provide any type we can use as BignumDblInt in that situation (unlike 64-bit gcc and clang, which give us __uint128_t). The only facilities it provides are compiler intrinsics to access an add-with-carry operation and a 64x64->128 multiplication (the latter delivering its product in two separate 64-bit output chunks). Hence, here's a substantial rework of the bignum code to make it implement everything in terms of _those_ primitives, rather than depending throughout on having BignumDblInt available to use ad-hoc. BignumDblInt does still exist, for the moment, but now it's an internal implementation detail of sshbn.h, only declared inside a new set of macros implementing arithmetic primitives, and not accessible to any code outside sshbn.h (which confirms that I really did catch all uses of it and remove them). The resulting code is surprisingly nice-looking, actually. You'd expect more hassle and roundabout circumlocutions when you drop down to using a more basic set of primitive operations, but actually, in many cases it's turned out shorter to write things in terms of the new BignumADC and BignumMUL macros - because almost all my uses of BignumDblInt were implementing those operations anyway, taking several lines at a time, and now they can do each thing in just one line. The biggest headache was Poly1305: I wasn't able to find any sensible way to adapt the existing Python script that generates the various per-int-size implementations of arithmetic mod 2^130-5, and so I had to rewrite it from scratch instead, with nothing in common with the old version beyond a handful of comments. But even that seems to have worked out nicely: the new version has much more legible descriptions of the high-level algorithms, by virtue of having a 'Multiprecision' type which wraps up the division into words, and yet Multiprecision's range analysis allows it to automatically drop out special cases such as multiplication by 5 being much easier than multiplication by another multi-word integer.
2015-12-16 14:12:26 +00:00
BignumCarry carry;
ret = newbn(rlen);
carry = 0;
maxspot = 0;
for (i = 1; i <= rlen; i++) {
Relegate BignumDblInt to an implementation detail of sshbn.h. As I mentioned in the previous commit, I'm going to want PuTTY to be able to run sensibly when compiled with 64-bit Visual Studio, including handling bignums in 64-bit chunks for speed. Unfortunately, 64-bit VS does not provide any type we can use as BignumDblInt in that situation (unlike 64-bit gcc and clang, which give us __uint128_t). The only facilities it provides are compiler intrinsics to access an add-with-carry operation and a 64x64->128 multiplication (the latter delivering its product in two separate 64-bit output chunks). Hence, here's a substantial rework of the bignum code to make it implement everything in terms of _those_ primitives, rather than depending throughout on having BignumDblInt available to use ad-hoc. BignumDblInt does still exist, for the moment, but now it's an internal implementation detail of sshbn.h, only declared inside a new set of macros implementing arithmetic primitives, and not accessible to any code outside sshbn.h (which confirms that I really did catch all uses of it and remove them). The resulting code is surprisingly nice-looking, actually. You'd expect more hassle and roundabout circumlocutions when you drop down to using a more basic set of primitive operations, but actually, in many cases it's turned out shorter to write things in terms of the new BignumADC and BignumMUL macros - because almost all my uses of BignumDblInt were implementing those operations anyway, taking several lines at a time, and now they can do each thing in just one line. The biggest headache was Poly1305: I wasn't able to find any sensible way to adapt the existing Python script that generates the various per-int-size implementations of arithmetic mod 2^130-5, and so I had to rewrite it from scratch instead, with nothing in common with the old version beyond a handful of comments. But even that seems to have worked out nicely: the new version has much more legible descriptions of the high-level algorithms, by virtue of having a 'Multiprecision' type which wraps up the division into words, and yet Multiprecision's range analysis allows it to automatically drop out special cases such as multiplication by 5 being much easier than multiplication by another multi-word integer.
2015-12-16 14:12:26 +00:00
BignumInt aword = (i <= (int)a[0] ? a[i] : 0);
BignumInt bword = (i <= (int)b[0] ? b[i] : 0);
BignumADC(ret[i], carry, aword, bword, carry);
if (ret[i] != 0 && i > maxspot)
maxspot = i;
}
ret[0] = maxspot;
return ret;
}
/*
* Subtraction. Returns a-b, or NULL if the result would come out
* negative (recall that this entire bignum module only handles
* positive numbers).
*/
Bignum bigsub(Bignum a, Bignum b)
{
int alen = a[0], blen = b[0];
int rlen = (alen > blen ? alen : blen);
int i, maxspot;
Bignum ret;
Relegate BignumDblInt to an implementation detail of sshbn.h. As I mentioned in the previous commit, I'm going to want PuTTY to be able to run sensibly when compiled with 64-bit Visual Studio, including handling bignums in 64-bit chunks for speed. Unfortunately, 64-bit VS does not provide any type we can use as BignumDblInt in that situation (unlike 64-bit gcc and clang, which give us __uint128_t). The only facilities it provides are compiler intrinsics to access an add-with-carry operation and a 64x64->128 multiplication (the latter delivering its product in two separate 64-bit output chunks). Hence, here's a substantial rework of the bignum code to make it implement everything in terms of _those_ primitives, rather than depending throughout on having BignumDblInt available to use ad-hoc. BignumDblInt does still exist, for the moment, but now it's an internal implementation detail of sshbn.h, only declared inside a new set of macros implementing arithmetic primitives, and not accessible to any code outside sshbn.h (which confirms that I really did catch all uses of it and remove them). The resulting code is surprisingly nice-looking, actually. You'd expect more hassle and roundabout circumlocutions when you drop down to using a more basic set of primitive operations, but actually, in many cases it's turned out shorter to write things in terms of the new BignumADC and BignumMUL macros - because almost all my uses of BignumDblInt were implementing those operations anyway, taking several lines at a time, and now they can do each thing in just one line. The biggest headache was Poly1305: I wasn't able to find any sensible way to adapt the existing Python script that generates the various per-int-size implementations of arithmetic mod 2^130-5, and so I had to rewrite it from scratch instead, with nothing in common with the old version beyond a handful of comments. But even that seems to have worked out nicely: the new version has much more legible descriptions of the high-level algorithms, by virtue of having a 'Multiprecision' type which wraps up the division into words, and yet Multiprecision's range analysis allows it to automatically drop out special cases such as multiplication by 5 being much easier than multiplication by another multi-word integer.
2015-12-16 14:12:26 +00:00
BignumCarry carry;
ret = newbn(rlen);
carry = 1;
maxspot = 0;
for (i = 1; i <= rlen; i++) {
Relegate BignumDblInt to an implementation detail of sshbn.h. As I mentioned in the previous commit, I'm going to want PuTTY to be able to run sensibly when compiled with 64-bit Visual Studio, including handling bignums in 64-bit chunks for speed. Unfortunately, 64-bit VS does not provide any type we can use as BignumDblInt in that situation (unlike 64-bit gcc and clang, which give us __uint128_t). The only facilities it provides are compiler intrinsics to access an add-with-carry operation and a 64x64->128 multiplication (the latter delivering its product in two separate 64-bit output chunks). Hence, here's a substantial rework of the bignum code to make it implement everything in terms of _those_ primitives, rather than depending throughout on having BignumDblInt available to use ad-hoc. BignumDblInt does still exist, for the moment, but now it's an internal implementation detail of sshbn.h, only declared inside a new set of macros implementing arithmetic primitives, and not accessible to any code outside sshbn.h (which confirms that I really did catch all uses of it and remove them). The resulting code is surprisingly nice-looking, actually. You'd expect more hassle and roundabout circumlocutions when you drop down to using a more basic set of primitive operations, but actually, in many cases it's turned out shorter to write things in terms of the new BignumADC and BignumMUL macros - because almost all my uses of BignumDblInt were implementing those operations anyway, taking several lines at a time, and now they can do each thing in just one line. The biggest headache was Poly1305: I wasn't able to find any sensible way to adapt the existing Python script that generates the various per-int-size implementations of arithmetic mod 2^130-5, and so I had to rewrite it from scratch instead, with nothing in common with the old version beyond a handful of comments. But even that seems to have worked out nicely: the new version has much more legible descriptions of the high-level algorithms, by virtue of having a 'Multiprecision' type which wraps up the division into words, and yet Multiprecision's range analysis allows it to automatically drop out special cases such as multiplication by 5 being much easier than multiplication by another multi-word integer.
2015-12-16 14:12:26 +00:00
BignumInt aword = (i <= (int)a[0] ? a[i] : 0);
BignumInt bword = (i <= (int)b[0] ? b[i] : 0);
BignumADC(ret[i], carry, aword, ~bword, carry);
if (ret[i] != 0 && i > maxspot)
maxspot = i;
}
ret[0] = maxspot;
if (!carry) {
freebn(ret);
return NULL;
}
return ret;
}
/*
* Create a bignum which is the bitmask covering another one. That
* is, the smallest integer which is >= N and is also one less than
* a power of two.
*/
Bignum bignum_bitmask(Bignum n)
{
Bignum ret = copybn(n);
int i;
BignumInt j;
i = ret[0];
while (n[i] == 0 && i > 0)
i--;
if (i <= 0)
return ret; /* input was zero */
j = 1;
while (j < n[i])
j = 2 * j + 1;
ret[i] = j;
while (--i > 0)
ret[i] = BIGNUM_INT_MASK;
return ret;
}
/*
Relegate BignumDblInt to an implementation detail of sshbn.h. As I mentioned in the previous commit, I'm going to want PuTTY to be able to run sensibly when compiled with 64-bit Visual Studio, including handling bignums in 64-bit chunks for speed. Unfortunately, 64-bit VS does not provide any type we can use as BignumDblInt in that situation (unlike 64-bit gcc and clang, which give us __uint128_t). The only facilities it provides are compiler intrinsics to access an add-with-carry operation and a 64x64->128 multiplication (the latter delivering its product in two separate 64-bit output chunks). Hence, here's a substantial rework of the bignum code to make it implement everything in terms of _those_ primitives, rather than depending throughout on having BignumDblInt available to use ad-hoc. BignumDblInt does still exist, for the moment, but now it's an internal implementation detail of sshbn.h, only declared inside a new set of macros implementing arithmetic primitives, and not accessible to any code outside sshbn.h (which confirms that I really did catch all uses of it and remove them). The resulting code is surprisingly nice-looking, actually. You'd expect more hassle and roundabout circumlocutions when you drop down to using a more basic set of primitive operations, but actually, in many cases it's turned out shorter to write things in terms of the new BignumADC and BignumMUL macros - because almost all my uses of BignumDblInt were implementing those operations anyway, taking several lines at a time, and now they can do each thing in just one line. The biggest headache was Poly1305: I wasn't able to find any sensible way to adapt the existing Python script that generates the various per-int-size implementations of arithmetic mod 2^130-5, and so I had to rewrite it from scratch instead, with nothing in common with the old version beyond a handful of comments. But even that seems to have worked out nicely: the new version has much more legible descriptions of the high-level algorithms, by virtue of having a 'Multiprecision' type which wraps up the division into words, and yet Multiprecision's range analysis allows it to automatically drop out special cases such as multiplication by 5 being much easier than multiplication by another multi-word integer.
2015-12-16 14:12:26 +00:00
* Convert an unsigned long into a bignum.
*/
Relegate BignumDblInt to an implementation detail of sshbn.h. As I mentioned in the previous commit, I'm going to want PuTTY to be able to run sensibly when compiled with 64-bit Visual Studio, including handling bignums in 64-bit chunks for speed. Unfortunately, 64-bit VS does not provide any type we can use as BignumDblInt in that situation (unlike 64-bit gcc and clang, which give us __uint128_t). The only facilities it provides are compiler intrinsics to access an add-with-carry operation and a 64x64->128 multiplication (the latter delivering its product in two separate 64-bit output chunks). Hence, here's a substantial rework of the bignum code to make it implement everything in terms of _those_ primitives, rather than depending throughout on having BignumDblInt available to use ad-hoc. BignumDblInt does still exist, for the moment, but now it's an internal implementation detail of sshbn.h, only declared inside a new set of macros implementing arithmetic primitives, and not accessible to any code outside sshbn.h (which confirms that I really did catch all uses of it and remove them). The resulting code is surprisingly nice-looking, actually. You'd expect more hassle and roundabout circumlocutions when you drop down to using a more basic set of primitive operations, but actually, in many cases it's turned out shorter to write things in terms of the new BignumADC and BignumMUL macros - because almost all my uses of BignumDblInt were implementing those operations anyway, taking several lines at a time, and now they can do each thing in just one line. The biggest headache was Poly1305: I wasn't able to find any sensible way to adapt the existing Python script that generates the various per-int-size implementations of arithmetic mod 2^130-5, and so I had to rewrite it from scratch instead, with nothing in common with the old version beyond a handful of comments. But even that seems to have worked out nicely: the new version has much more legible descriptions of the high-level algorithms, by virtue of having a 'Multiprecision' type which wraps up the division into words, and yet Multiprecision's range analysis allows it to automatically drop out special cases such as multiplication by 5 being much easier than multiplication by another multi-word integer.
2015-12-16 14:12:26 +00:00
Bignum bignum_from_long(unsigned long n)
{
Relegate BignumDblInt to an implementation detail of sshbn.h. As I mentioned in the previous commit, I'm going to want PuTTY to be able to run sensibly when compiled with 64-bit Visual Studio, including handling bignums in 64-bit chunks for speed. Unfortunately, 64-bit VS does not provide any type we can use as BignumDblInt in that situation (unlike 64-bit gcc and clang, which give us __uint128_t). The only facilities it provides are compiler intrinsics to access an add-with-carry operation and a 64x64->128 multiplication (the latter delivering its product in two separate 64-bit output chunks). Hence, here's a substantial rework of the bignum code to make it implement everything in terms of _those_ primitives, rather than depending throughout on having BignumDblInt available to use ad-hoc. BignumDblInt does still exist, for the moment, but now it's an internal implementation detail of sshbn.h, only declared inside a new set of macros implementing arithmetic primitives, and not accessible to any code outside sshbn.h (which confirms that I really did catch all uses of it and remove them). The resulting code is surprisingly nice-looking, actually. You'd expect more hassle and roundabout circumlocutions when you drop down to using a more basic set of primitive operations, but actually, in many cases it's turned out shorter to write things in terms of the new BignumADC and BignumMUL macros - because almost all my uses of BignumDblInt were implementing those operations anyway, taking several lines at a time, and now they can do each thing in just one line. The biggest headache was Poly1305: I wasn't able to find any sensible way to adapt the existing Python script that generates the various per-int-size implementations of arithmetic mod 2^130-5, and so I had to rewrite it from scratch instead, with nothing in common with the old version beyond a handful of comments. But even that seems to have worked out nicely: the new version has much more legible descriptions of the high-level algorithms, by virtue of having a 'Multiprecision' type which wraps up the division into words, and yet Multiprecision's range analysis allows it to automatically drop out special cases such as multiplication by 5 being much easier than multiplication by another multi-word integer.
2015-12-16 14:12:26 +00:00
const int maxwords =
(sizeof(unsigned long) + sizeof(BignumInt) - 1) / sizeof(BignumInt);
Bignum ret;
Relegate BignumDblInt to an implementation detail of sshbn.h. As I mentioned in the previous commit, I'm going to want PuTTY to be able to run sensibly when compiled with 64-bit Visual Studio, including handling bignums in 64-bit chunks for speed. Unfortunately, 64-bit VS does not provide any type we can use as BignumDblInt in that situation (unlike 64-bit gcc and clang, which give us __uint128_t). The only facilities it provides are compiler intrinsics to access an add-with-carry operation and a 64x64->128 multiplication (the latter delivering its product in two separate 64-bit output chunks). Hence, here's a substantial rework of the bignum code to make it implement everything in terms of _those_ primitives, rather than depending throughout on having BignumDblInt available to use ad-hoc. BignumDblInt does still exist, for the moment, but now it's an internal implementation detail of sshbn.h, only declared inside a new set of macros implementing arithmetic primitives, and not accessible to any code outside sshbn.h (which confirms that I really did catch all uses of it and remove them). The resulting code is surprisingly nice-looking, actually. You'd expect more hassle and roundabout circumlocutions when you drop down to using a more basic set of primitive operations, but actually, in many cases it's turned out shorter to write things in terms of the new BignumADC and BignumMUL macros - because almost all my uses of BignumDblInt were implementing those operations anyway, taking several lines at a time, and now they can do each thing in just one line. The biggest headache was Poly1305: I wasn't able to find any sensible way to adapt the existing Python script that generates the various per-int-size implementations of arithmetic mod 2^130-5, and so I had to rewrite it from scratch instead, with nothing in common with the old version beyond a handful of comments. But even that seems to have worked out nicely: the new version has much more legible descriptions of the high-level algorithms, by virtue of having a 'Multiprecision' type which wraps up the division into words, and yet Multiprecision's range analysis allows it to automatically drop out special cases such as multiplication by 5 being much easier than multiplication by another multi-word integer.
2015-12-16 14:12:26 +00:00
int i;
ret = newbn(maxwords);
ret[0] = 0;
for (i = 0; i < maxwords; i++) {
ret[i+1] = n >> (i * BIGNUM_INT_BITS);
if (ret[i+1] != 0)
ret[0] = i+1;
}
return ret;
}
/*
* Add a long to a bignum.
*/
Relegate BignumDblInt to an implementation detail of sshbn.h. As I mentioned in the previous commit, I'm going to want PuTTY to be able to run sensibly when compiled with 64-bit Visual Studio, including handling bignums in 64-bit chunks for speed. Unfortunately, 64-bit VS does not provide any type we can use as BignumDblInt in that situation (unlike 64-bit gcc and clang, which give us __uint128_t). The only facilities it provides are compiler intrinsics to access an add-with-carry operation and a 64x64->128 multiplication (the latter delivering its product in two separate 64-bit output chunks). Hence, here's a substantial rework of the bignum code to make it implement everything in terms of _those_ primitives, rather than depending throughout on having BignumDblInt available to use ad-hoc. BignumDblInt does still exist, for the moment, but now it's an internal implementation detail of sshbn.h, only declared inside a new set of macros implementing arithmetic primitives, and not accessible to any code outside sshbn.h (which confirms that I really did catch all uses of it and remove them). The resulting code is surprisingly nice-looking, actually. You'd expect more hassle and roundabout circumlocutions when you drop down to using a more basic set of primitive operations, but actually, in many cases it's turned out shorter to write things in terms of the new BignumADC and BignumMUL macros - because almost all my uses of BignumDblInt were implementing those operations anyway, taking several lines at a time, and now they can do each thing in just one line. The biggest headache was Poly1305: I wasn't able to find any sensible way to adapt the existing Python script that generates the various per-int-size implementations of arithmetic mod 2^130-5, and so I had to rewrite it from scratch instead, with nothing in common with the old version beyond a handful of comments. But even that seems to have worked out nicely: the new version has much more legible descriptions of the high-level algorithms, by virtue of having a 'Multiprecision' type which wraps up the division into words, and yet Multiprecision's range analysis allows it to automatically drop out special cases such as multiplication by 5 being much easier than multiplication by another multi-word integer.
2015-12-16 14:12:26 +00:00
Bignum bignum_add_long(Bignum number, unsigned long n)
{
Relegate BignumDblInt to an implementation detail of sshbn.h. As I mentioned in the previous commit, I'm going to want PuTTY to be able to run sensibly when compiled with 64-bit Visual Studio, including handling bignums in 64-bit chunks for speed. Unfortunately, 64-bit VS does not provide any type we can use as BignumDblInt in that situation (unlike 64-bit gcc and clang, which give us __uint128_t). The only facilities it provides are compiler intrinsics to access an add-with-carry operation and a 64x64->128 multiplication (the latter delivering its product in two separate 64-bit output chunks). Hence, here's a substantial rework of the bignum code to make it implement everything in terms of _those_ primitives, rather than depending throughout on having BignumDblInt available to use ad-hoc. BignumDblInt does still exist, for the moment, but now it's an internal implementation detail of sshbn.h, only declared inside a new set of macros implementing arithmetic primitives, and not accessible to any code outside sshbn.h (which confirms that I really did catch all uses of it and remove them). The resulting code is surprisingly nice-looking, actually. You'd expect more hassle and roundabout circumlocutions when you drop down to using a more basic set of primitive operations, but actually, in many cases it's turned out shorter to write things in terms of the new BignumADC and BignumMUL macros - because almost all my uses of BignumDblInt were implementing those operations anyway, taking several lines at a time, and now they can do each thing in just one line. The biggest headache was Poly1305: I wasn't able to find any sensible way to adapt the existing Python script that generates the various per-int-size implementations of arithmetic mod 2^130-5, and so I had to rewrite it from scratch instead, with nothing in common with the old version beyond a handful of comments. But even that seems to have worked out nicely: the new version has much more legible descriptions of the high-level algorithms, by virtue of having a 'Multiprecision' type which wraps up the division into words, and yet Multiprecision's range analysis allows it to automatically drop out special cases such as multiplication by 5 being much easier than multiplication by another multi-word integer.
2015-12-16 14:12:26 +00:00
const int maxwords =
(sizeof(unsigned long) + sizeof(BignumInt) - 1) / sizeof(BignumInt);
Bignum ret;
int words, i;
BignumCarry carry;
Relegate BignumDblInt to an implementation detail of sshbn.h. As I mentioned in the previous commit, I'm going to want PuTTY to be able to run sensibly when compiled with 64-bit Visual Studio, including handling bignums in 64-bit chunks for speed. Unfortunately, 64-bit VS does not provide any type we can use as BignumDblInt in that situation (unlike 64-bit gcc and clang, which give us __uint128_t). The only facilities it provides are compiler intrinsics to access an add-with-carry operation and a 64x64->128 multiplication (the latter delivering its product in two separate 64-bit output chunks). Hence, here's a substantial rework of the bignum code to make it implement everything in terms of _those_ primitives, rather than depending throughout on having BignumDblInt available to use ad-hoc. BignumDblInt does still exist, for the moment, but now it's an internal implementation detail of sshbn.h, only declared inside a new set of macros implementing arithmetic primitives, and not accessible to any code outside sshbn.h (which confirms that I really did catch all uses of it and remove them). The resulting code is surprisingly nice-looking, actually. You'd expect more hassle and roundabout circumlocutions when you drop down to using a more basic set of primitive operations, but actually, in many cases it's turned out shorter to write things in terms of the new BignumADC and BignumMUL macros - because almost all my uses of BignumDblInt were implementing those operations anyway, taking several lines at a time, and now they can do each thing in just one line. The biggest headache was Poly1305: I wasn't able to find any sensible way to adapt the existing Python script that generates the various per-int-size implementations of arithmetic mod 2^130-5, and so I had to rewrite it from scratch instead, with nothing in common with the old version beyond a handful of comments. But even that seems to have worked out nicely: the new version has much more legible descriptions of the high-level algorithms, by virtue of having a 'Multiprecision' type which wraps up the division into words, and yet Multiprecision's range analysis allows it to automatically drop out special cases such as multiplication by 5 being much easier than multiplication by another multi-word integer.
2015-12-16 14:12:26 +00:00
words = number[0];
if (words < maxwords)
words = maxwords;
words++;
ret = newbn(words);
carry = 0;
ret[0] = 0;
for (i = 0; i < words; i++) {
BignumInt nword = (i < maxwords ? n >> (i * BIGNUM_INT_BITS) : 0);
BignumInt numword = (i < number[0] ? number[i+1] : 0);
BignumADC(ret[i+1], carry, numword, nword, carry);
if (ret[i+1] != 0)
ret[0] = i+1;
}
return ret;
}
/*
* Compute the residue of a bignum, modulo a (max 16-bit) short.
*/
unsigned short bignum_mod_short(Bignum number, unsigned short modulus)
{
Relegate BignumDblInt to an implementation detail of sshbn.h. As I mentioned in the previous commit, I'm going to want PuTTY to be able to run sensibly when compiled with 64-bit Visual Studio, including handling bignums in 64-bit chunks for speed. Unfortunately, 64-bit VS does not provide any type we can use as BignumDblInt in that situation (unlike 64-bit gcc and clang, which give us __uint128_t). The only facilities it provides are compiler intrinsics to access an add-with-carry operation and a 64x64->128 multiplication (the latter delivering its product in two separate 64-bit output chunks). Hence, here's a substantial rework of the bignum code to make it implement everything in terms of _those_ primitives, rather than depending throughout on having BignumDblInt available to use ad-hoc. BignumDblInt does still exist, for the moment, but now it's an internal implementation detail of sshbn.h, only declared inside a new set of macros implementing arithmetic primitives, and not accessible to any code outside sshbn.h (which confirms that I really did catch all uses of it and remove them). The resulting code is surprisingly nice-looking, actually. You'd expect more hassle and roundabout circumlocutions when you drop down to using a more basic set of primitive operations, but actually, in many cases it's turned out shorter to write things in terms of the new BignumADC and BignumMUL macros - because almost all my uses of BignumDblInt were implementing those operations anyway, taking several lines at a time, and now they can do each thing in just one line. The biggest headache was Poly1305: I wasn't able to find any sensible way to adapt the existing Python script that generates the various per-int-size implementations of arithmetic mod 2^130-5, and so I had to rewrite it from scratch instead, with nothing in common with the old version beyond a handful of comments. But even that seems to have worked out nicely: the new version has much more legible descriptions of the high-level algorithms, by virtue of having a 'Multiprecision' type which wraps up the division into words, and yet Multiprecision's range analysis allows it to automatically drop out special cases such as multiplication by 5 being much easier than multiplication by another multi-word integer.
2015-12-16 14:12:26 +00:00
unsigned long mod = modulus, r = 0;
/* Precompute (BIGNUM_INT_MASK+1) % mod */
unsigned long base_r = (BIGNUM_INT_MASK - modulus + 1) % mod;
int i;
Relegate BignumDblInt to an implementation detail of sshbn.h. As I mentioned in the previous commit, I'm going to want PuTTY to be able to run sensibly when compiled with 64-bit Visual Studio, including handling bignums in 64-bit chunks for speed. Unfortunately, 64-bit VS does not provide any type we can use as BignumDblInt in that situation (unlike 64-bit gcc and clang, which give us __uint128_t). The only facilities it provides are compiler intrinsics to access an add-with-carry operation and a 64x64->128 multiplication (the latter delivering its product in two separate 64-bit output chunks). Hence, here's a substantial rework of the bignum code to make it implement everything in terms of _those_ primitives, rather than depending throughout on having BignumDblInt available to use ad-hoc. BignumDblInt does still exist, for the moment, but now it's an internal implementation detail of sshbn.h, only declared inside a new set of macros implementing arithmetic primitives, and not accessible to any code outside sshbn.h (which confirms that I really did catch all uses of it and remove them). The resulting code is surprisingly nice-looking, actually. You'd expect more hassle and roundabout circumlocutions when you drop down to using a more basic set of primitive operations, but actually, in many cases it's turned out shorter to write things in terms of the new BignumADC and BignumMUL macros - because almost all my uses of BignumDblInt were implementing those operations anyway, taking several lines at a time, and now they can do each thing in just one line. The biggest headache was Poly1305: I wasn't able to find any sensible way to adapt the existing Python script that generates the various per-int-size implementations of arithmetic mod 2^130-5, and so I had to rewrite it from scratch instead, with nothing in common with the old version beyond a handful of comments. But even that seems to have worked out nicely: the new version has much more legible descriptions of the high-level algorithms, by virtue of having a 'Multiprecision' type which wraps up the division into words, and yet Multiprecision's range analysis allows it to automatically drop out special cases such as multiplication by 5 being much easier than multiplication by another multi-word integer.
2015-12-16 14:12:26 +00:00
for (i = number[0]; i > 0; i--) {
/*
* Conceptually, ((r << BIGNUM_INT_BITS) + number[i]) % mod
*/
r = ((r * base_r) + (number[i] % mod)) % mod;
}
return (unsigned short) r;
}
#ifdef DEBUG
void diagbn(char *prefix, Bignum md)
{
int i, nibbles, morenibbles;
static const char hex[] = "0123456789ABCDEF";
debug(("%s0x", prefix ? prefix : ""));
nibbles = (3 + bignum_bitcount(md)) / 4;
if (nibbles < 1)
nibbles = 1;
morenibbles = 4 * md[0] - nibbles;
for (i = 0; i < morenibbles; i++)
debug(("-"));
for (i = nibbles; i--;)
debug(("%c",
hex[(bignum_byte(md, i / 2) >> (4 * (i % 2))) & 0xF]));
if (prefix)
debug(("\n"));
}
#endif
/*
* Simple division.
*/
Bignum bigdiv(Bignum a, Bignum b)
{
Bignum q = newbn(a[0]);
bigdivmod(a, b, NULL, q);
while (q[0] > 1 && q[q[0]] == 0)
q[0]--;
return q;
}
/*
* Simple remainder.
*/
Bignum bigmod(Bignum a, Bignum b)
{
Bignum r = newbn(b[0]);
bigdivmod(a, b, r, NULL);
while (r[0] > 1 && r[r[0]] == 0)
r[0]--;
return r;
}
/*
* Greatest common divisor.
*/
Bignum biggcd(Bignum av, Bignum bv)
{
Bignum a = copybn(av);
Bignum b = copybn(bv);
while (bignum_cmp(b, Zero) != 0) {
Bignum t = newbn(b[0]);
bigdivmod(a, b, t, NULL);
while (t[0] > 1 && t[t[0]] == 0)
t[0]--;
freebn(a);
a = b;
b = t;
}
freebn(b);
return a;
}
/*
* Modular inverse, using Euclid's extended algorithm.
*/
Bignum modinv(Bignum number, Bignum modulus)
{
Bignum a = copybn(modulus);
Bignum b = copybn(number);
Bignum xp = copybn(Zero);
Bignum x = copybn(One);
int sign = +1;
assert(number[number[0]] != 0);
assert(modulus[modulus[0]] != 0);
while (bignum_cmp(b, One) != 0) {
Bignum t, q;
if (bignum_cmp(b, Zero) == 0) {
/*
* Found a common factor between the inputs, so we cannot
* return a modular inverse at all.
*/
freebn(b);
freebn(a);
freebn(xp);
freebn(x);
return NULL;
}
t = newbn(b[0]);
q = newbn(a[0]);
bigdivmod(a, b, t, q);
while (t[0] > 1 && t[t[0]] == 0)
t[0]--;
while (q[0] > 1 && q[q[0]] == 0)
q[0]--;
freebn(a);
a = b;
b = t;
t = xp;
xp = x;
x = bigmuladd(q, xp, t);
sign = -sign;
freebn(t);
freebn(q);
}
freebn(b);
freebn(a);
freebn(xp);
/* now we know that sign * x == 1, and that x < modulus */
if (sign < 0) {
/* set a new x to be modulus - x */
Bignum newx = newbn(modulus[0]);
BignumInt carry = 0;
int maxspot = 1;
int i;
for (i = 1; i <= (int)newx[0]; i++) {
BignumInt aword = (i <= (int)modulus[0] ? modulus[i] : 0);
BignumInt bword = (i <= (int)x[0] ? x[i] : 0);
newx[i] = aword - bword - carry;
bword = ~bword;
carry = carry ? (newx[i] >= bword) : (newx[i] > bword);
if (newx[i] != 0)
maxspot = i;
}
newx[0] = maxspot;
freebn(x);
x = newx;
}
/* and return. */
return x;
}
/*
* Render a bignum into decimal. Return a malloced string holding
* the decimal representation.
*/
char *bignum_decimal(Bignum x)
{
int ndigits, ndigit;
int i, iszero;
Relegate BignumDblInt to an implementation detail of sshbn.h. As I mentioned in the previous commit, I'm going to want PuTTY to be able to run sensibly when compiled with 64-bit Visual Studio, including handling bignums in 64-bit chunks for speed. Unfortunately, 64-bit VS does not provide any type we can use as BignumDblInt in that situation (unlike 64-bit gcc and clang, which give us __uint128_t). The only facilities it provides are compiler intrinsics to access an add-with-carry operation and a 64x64->128 multiplication (the latter delivering its product in two separate 64-bit output chunks). Hence, here's a substantial rework of the bignum code to make it implement everything in terms of _those_ primitives, rather than depending throughout on having BignumDblInt available to use ad-hoc. BignumDblInt does still exist, for the moment, but now it's an internal implementation detail of sshbn.h, only declared inside a new set of macros implementing arithmetic primitives, and not accessible to any code outside sshbn.h (which confirms that I really did catch all uses of it and remove them). The resulting code is surprisingly nice-looking, actually. You'd expect more hassle and roundabout circumlocutions when you drop down to using a more basic set of primitive operations, but actually, in many cases it's turned out shorter to write things in terms of the new BignumADC and BignumMUL macros - because almost all my uses of BignumDblInt were implementing those operations anyway, taking several lines at a time, and now they can do each thing in just one line. The biggest headache was Poly1305: I wasn't able to find any sensible way to adapt the existing Python script that generates the various per-int-size implementations of arithmetic mod 2^130-5, and so I had to rewrite it from scratch instead, with nothing in common with the old version beyond a handful of comments. But even that seems to have worked out nicely: the new version has much more legible descriptions of the high-level algorithms, by virtue of having a 'Multiprecision' type which wraps up the division into words, and yet Multiprecision's range analysis allows it to automatically drop out special cases such as multiplication by 5 being much easier than multiplication by another multi-word integer.
2015-12-16 14:12:26 +00:00
BignumInt carry;
char *ret;
BignumInt *workspace;
/*
* First, estimate the number of digits. Since log(10)/log(2)
* is just greater than 93/28 (the joys of continued fraction
* approximations...) we know that for every 93 bits, we need
* at most 28 digits. This will tell us how much to malloc.
*
* Formally: if x has i bits, that means x is strictly less
* than 2^i. Since 2 is less than 10^(28/93), this is less than
* 10^(28i/93). We need an integer power of ten, so we must
* round up (rounding down might make it less than x again).
* Therefore if we multiply the bit count by 28/93, rounding
* up, we will have enough digits.
*
* i=0 (i.e., x=0) is an irritating special case.
*/
i = bignum_bitcount(x);
if (!i)
ndigits = 1; /* x = 0 */
else
ndigits = (28 * i + 92) / 93; /* multiply by 28/93 and round up */
ndigits++; /* allow for trailing \0 */
ret = snewn(ndigits, char);
/*
* Now allocate some workspace to hold the binary form as we
* repeatedly divide it by ten. Initialise this to the
* big-endian form of the number.
*/
workspace = snewn(x[0], BignumInt);
for (i = 0; i < (int)x[0]; i++)
workspace[i] = x[x[0] - i];
/*
* Next, write the decimal number starting with the last digit.
* We use ordinary short division, dividing 10 into the
* workspace.
*/
ndigit = ndigits - 1;
ret[ndigit] = '\0';
do {
iszero = 1;
carry = 0;
for (i = 0; i < (int)x[0]; i++) {
Relegate BignumDblInt to an implementation detail of sshbn.h. As I mentioned in the previous commit, I'm going to want PuTTY to be able to run sensibly when compiled with 64-bit Visual Studio, including handling bignums in 64-bit chunks for speed. Unfortunately, 64-bit VS does not provide any type we can use as BignumDblInt in that situation (unlike 64-bit gcc and clang, which give us __uint128_t). The only facilities it provides are compiler intrinsics to access an add-with-carry operation and a 64x64->128 multiplication (the latter delivering its product in two separate 64-bit output chunks). Hence, here's a substantial rework of the bignum code to make it implement everything in terms of _those_ primitives, rather than depending throughout on having BignumDblInt available to use ad-hoc. BignumDblInt does still exist, for the moment, but now it's an internal implementation detail of sshbn.h, only declared inside a new set of macros implementing arithmetic primitives, and not accessible to any code outside sshbn.h (which confirms that I really did catch all uses of it and remove them). The resulting code is surprisingly nice-looking, actually. You'd expect more hassle and roundabout circumlocutions when you drop down to using a more basic set of primitive operations, but actually, in many cases it's turned out shorter to write things in terms of the new BignumADC and BignumMUL macros - because almost all my uses of BignumDblInt were implementing those operations anyway, taking several lines at a time, and now they can do each thing in just one line. The biggest headache was Poly1305: I wasn't able to find any sensible way to adapt the existing Python script that generates the various per-int-size implementations of arithmetic mod 2^130-5, and so I had to rewrite it from scratch instead, with nothing in common with the old version beyond a handful of comments. But even that seems to have worked out nicely: the new version has much more legible descriptions of the high-level algorithms, by virtue of having a 'Multiprecision' type which wraps up the division into words, and yet Multiprecision's range analysis allows it to automatically drop out special cases such as multiplication by 5 being much easier than multiplication by another multi-word integer.
2015-12-16 14:12:26 +00:00
/*
* Conceptually, we want to compute
*
* (carry << BIGNUM_INT_BITS) + workspace[i]
* -----------------------------------------
* 10
*
* but we don't have an integer type longer than BignumInt
* to work with. So we have to do it in pieces.
*/
BignumInt q, r;
q = workspace[i] / 10;
r = workspace[i] % 10;
/* I want (BIGNUM_INT_MASK+1)/10 but can't say so directly! */
q += carry * ((BIGNUM_INT_MASK-9) / 10 + 1);
r += carry * ((BIGNUM_INT_MASK-9) % 10);
q += r / 10;
r %= 10;
workspace[i] = q;
carry = r;
if (workspace[i])
iszero = 0;
}
ret[--ndigit] = (char) (carry + '0');
} while (!iszero);
/*
* There's a chance we've fallen short of the start of the
* string. Correct if so.
*/
if (ndigit > 0)
memmove(ret, ret + ndigit, ndigits - ndigit);
/*
* Done.
*/
smemclr(workspace, x[0] * sizeof(*workspace));
sfree(workspace);
return ret;
}