1
0
mirror of https://git.tartarus.org/simon/putty.git synced 2025-01-10 01:48:00 +00:00
Commit Graph

6022 Commits

Author SHA1 Message Date
Simon Tatham
cdffb995df Pageant client: tolerate failure to list keys.
This enables Pageant to act as a client for OpenSSH's agent, which
nowadays refuses to respond to SSH1_AGENTC_REQUEST_RSA_IDENTITIES, or
any other SSH1_AGENTC_* message. It now treats SSH_AGENT_FAILURE in
response to either 'list identities' request the same as successfully
receiving an empty list.
2020-03-03 21:49:57 +00:00
Jacob Nevins
e85b159d87 Minimally document key generation novelties.
Covers Ed448 (and the user interface change to "EdDSA"), and the prime
generation method. (Both of these need better words, really.)
2020-03-02 23:36:09 +00:00
Simon Tatham
ead9355882 Fix comment in old probabilistic prime algorithm.
We're no longer doing the delta step at all, and even if we were, it's
not really part of _that_ particular algorithm - candidate selection
is centralised between all of them.
2020-03-02 18:51:55 +00:00
Simon Tatham
68ebcd7b86 Provable primes: be more careful about max_bits_needed.
When judging how many bits of the generated prime we can afford to
consume with factors of p-1 and still have enough last few bits to
vary to find an actual prime in the range, I started by setting
max_bits_needed to the total size of the required output number, and
then subtracting a safety margin.

But that doesn't account for the fact that some bits may _already_
have been used by prior requirements from the PrimeCandidateSource,
such as the 'firstbits' used in RSA generation, or the 160-bit factor
of p-1 used in DSA.

So now we start by initialising max_bits_needed by asking the PCS how
many bits of entropy it still has left, and making sure not to reduce
_that_ by too much. Should fix another cause of hangs during prime
generation.

(Also, while I'm here, I've tweaked one of the compiled-out
diagnostics so that it reports how many bits it _does_ have left once
it starts trying to find a prime. That should make it easier to spot
any further problems in this area.)
2020-03-02 18:49:32 +00:00
Simon Tatham
bf3aa818e4 Fix occasional hang in SPP_MAURER_COMPLEX logic.
I generated a list of sizes in bits for factors of p-1, knowing a
range of bit sizes that I wanted their product to fall in. But I
forgot that when you multiply together two or more numbers of
particular bit sizes, you can get more than one possible bit size
back. My code was estimating at the low end of the possible range, so
sometimes it would end up with more bits of the output prime specified
than it expected, and be left without enough variable bits to actually
be able to find a prime somewhere in the remaining space.

Now when I'm planning the factor list, I compute both the min and max
sizes of the product of the factors, and abort if any part of the
possible range is outside the safe zone.
2020-03-02 18:49:07 +00:00
Simon Tatham
a82e1da0b7 Fix GUI config crash due to missing Ed448.
How embarrassing - this morning's triumphant push of a shiny new
public-key method managed to break the entire GUI configuration system
so that it dereferences a null pointer during setup. That's what I get
for only testing the crypto side.

settings.c generates a preference list of host-key enum values that
included HK_ED448. So then hklist_handler() in config.c tries to look
that id up in its list of names, and doesn't find one, because I
forgot to add it there. Now reinstated.
2020-03-02 18:43:00 +00:00
Simon Tatham
289d8873ec Fix mp_{eq,hs}_integer(tiny, huge).
The comparison functions between an mp_int and an integer worked by
walking along the mp_int, comparing each of its words to the
corresponding word of the integer. When they ran out of mp_int, they'd
stop.

But this overlooks the possibility that they might not have run out of
_integer_ yet! If BIGNUM_INT_BITS is defined to be less than the size
of a uintmax_t, then comparing (say) the uintmax_t 0x8000000000000001
against a one-word mp_int containing 0x0001 would return equality,
because it would never get as far as spotting the high bit of the
integer.

Fixed by iterating up to the max of the number of BignumInts in the
mp_int and the number that cover a uintmax_t. That means we have to
use mp_word() instead of a direct array lookup to get the mp_int words
to compare against, since now the word indices might be out of range.
2020-03-02 18:42:31 +00:00
Simon Tatham
3ea69c290e mpint: clean up handling of uintmax_t.
Functions like mp_copy_integer_into, mp_add_integer_into and
mp_hs_integer all take an ordinary C integer in the form of a
uintmax_t, and perform an operation between that and an mp_int. In
order to do that, they have to break it up into some number of
BignumInt, via bit shifts.

But in C, shifting by an amount equal to or greater than the width of
the type is undefined behaviour, and you risk the compiler generating
nonsense or complaining at compile time. I did various dodges in those
functions to try to avoid that, but didn't manage to use the same
idiom everywhere. Sometimes I'd leave the integer in its original form
and shift it right by increasing multiples of BIGNUM_INT_BITS;
sometimes I'd shift it down in place every time. And mostly I'd do the
conditional shift by checking against sizeof(n), but once I did it by
shifting by half the word and then the other half.

Now refactored so that there's a pair of functions to shift a
uintmax_t left or right by BIGNUM_INT_BITS in what I hope is a UB-safe
manner, and changed all the code I could find to use them.
2020-03-02 18:34:52 +00:00
Simon Tatham
a085acbadf Support the new "ssh-ed448" key type.
This is standardised by RFC 8709 at SHOULD level, and for us it's not
too difficult (because we use general-purpose elliptic-curve code). So
let's be up to date for a change, and add it.

This implementation uses all the formats defined in the RFC. But we
also have to choose a wire format for the public+private key blob sent
to an agent, and since the OpenSSH agent protocol is the de facto
standard but not (yet?) handled by the IETF, OpenSSH themselves get to
say what the format for a key should or shouldn't be. So if they don't
support a particular key method, what do you do?

I checked with them, and they agreed that there's an obviously right
format for Ed448 keys, which is to do them exactly like Ed25519 except
that you have a 57-byte string everywhere Ed25519 had a 32-byte
string. So I've done that.
2020-03-02 07:09:08 +00:00
Simon Tatham
9334eb3ff0 PuTTYgen: prepare for more general EdDSA.
In the Windows GUI, all the controls that were previously named or
labelled Ed25519 are now labelled EdDSA, and when you select that
top-level key type, there's a dropdown for the specific curve (just
like for ECDSA), whose only current value is Ed25519.

In command-line PuTTYgen, you can say '-t eddsa' and give a number of
bits, just like '-t ecdsa'. You can also still say '-t ed25519', for
backwards compatibility.

Also in command-line PuTTYgen, I've reworked the error messages if you
give a number of bits that doesn't correspond to a known elliptic
curve. Now the messages are generated by consulting the list of
curves, so that that list has to be updated by hand in one fewer
place.
2020-03-02 07:05:19 +00:00
Simon Tatham
5f3d79332e Support a per-instance hash prefix in EdDSA. (NFC)
In Ed25519, when you hash things, you just feed them straight to
SHA-512. But in Ed448, you prefix them with a magic string before
feeding them to SHAKE256, and the magic string varies depending on
which variant of Ed448 is in use.

Add support for such a prefix, and for Ed25519, set it to the empty
string.
2020-03-02 07:03:15 +00:00
Simon Tatham
4e6c69d5df Prepare for EdDSA lengths not 7 mod 8. (NFC)
An EdDSA public key is transmitted as an integer just big enough to
store the curve point's y value plus one extra bit. The topmost bit of
the integer is set to indicate the parity of the x value.

In Ed25519, this works out very nicely: the curve modulus is just
under 2^255, so the y value occupies all but one bit of the topmost
byte of the integer, leaving the y parity to fit neatly in the spare
bit. But in Ed448, the curve modulus occupies a whole number of bytes
(56 of them) and the format standardises that you therefore have to
use a 57-byte string for the public key, with the highest-order
(final) byte having zero in the low 7 of its bits.

To support this, I've arranged that the Edwards-curve modes in
sshecc.c now set curve->fieldBytes to the right number of bytes to
hold curve->fieldBits+1 bits, instead of the obvious curve->fieldBits.
Doing it that way means fewer special cases everywhere else in the
code.

Also, this means changing the order of the validity check: we now wait
until after we've checked and cleared the topmost bit to see if the
rest is within range. That deals with checking the intervening 7 zero
bits.
2020-03-02 07:02:08 +00:00
Simon Tatham
6c226e4c57 Support log2_cofactor for Edwards curves (NFC).
This works more or less like the similar refactoring for Montgomery
curves in 7fa0749fcb: where we previously hardwired the clearing of 3
low bits of a private exponent, we now turn that 3 into a curve-
specific constant, so that Ed448 will be able to set it to a different
value.
2020-03-02 06:58:03 +00:00
Simon Tatham
b8a08f9321 Implement the SHA-3 family.
These aren't used _directly_ by SSH at present, but an instance of
SHAKE-256 is required by the recently standardised Ed448.
2020-03-02 06:55:48 +00:00
Simon Tatham
31e5b621b5 Implement "curve448-sha512" kex, from RFC 8731.
With all the preparation now in place, this is more or less trivial.
We add a new curve setup function in sshecc.c, and an ssh_kex linking
to it; we add the curve parameters to the reference / test code
eccref.py, and use them to generate the list of low-order input values
that should be rejected by the sanity check on the kex output; we add
the standard test vectors from RFC 7748 in cryptsuite.py, and the
low-order values we just generated.
2020-03-01 21:13:59 +00:00
Simon Tatham
75e7ddea02 cmdgen: add help for the --primes option.
There's always something. I added the actual option, but forgot to
advertise it in the online help.

While I'm here, I've also allowed the word 'proven' as an alternative
spelling for 'provable', because having the approved spellings be
'probable' and 'provable' is just asking for hilarious typos.
2020-03-01 20:37:09 +00:00
Simon Tatham
925b98b574 Allow asking for provable primes in PuTTYgen.
In Windows PuTTYgen, this is selected by an extra set of radio-button
style menu options in the Key menu. In the command-line version,
there's a new --primes=provable option.

This whole system is new, so I'm not enabling it by default just yet.
I may in future, though: it's running faster than I expected (in
particular, a lot faster than any previous prototype of the same
algorithm I attempted in standalone Python).
2020-03-01 20:19:46 +00:00
Simon Tatham
141663abba New system for generating provable prime numbers.
This uses all the facilities I've been adding in previous commits. It
implements Maurer's algorithm for generating a prime together with a
Pocklington certificate of its primality, by means of recursing to
generate smaller primes to be factors of p-1 for the Pocklington
check, then doing a test Miller-Rabin iteration to quickly exclude
obvious composites, and then doing the full Pocklington check.

In my case, this means I add each prime I generate to a Pockle. So the
algorithm says: recursively generate some primes and add them to the
PrimeCandidateSource, then repeatedly get a candidate value back from
the pcs, check it with M-R, and feed it to the Pockle. If the Pockle
accepts it, then we're done (and the Pockle will then know that value
is prime when our recursive caller uses it in turn, if we have one).

A small refinement to that algorithm is that I iterate M-R until the
witness value I tried is such that it at least _might_ be a primitive
root - which is to say that M-R didn't get 1 by evaluating any power
of it smaller than n-1. That way, there's less chance of the Pockle
rejecting the witness value. And sooner or later M-R must _either_
tell me I've got a potential primitive-root witness _or_ tell me it's
shown the number to be composite.
2020-03-01 20:19:46 +00:00
Simon Tatham
d711cc849c Add linear mode to the new progress reporting system.
The old system I removed in commit 79d3c1783b had both linear and
exponential phase types, but the new one only had exponential, because
at that point I'd just thrown away all the clients of the linear phase
type. But I'm going to add another one shortly, so I have to put it
back in.
2020-03-01 20:09:01 +00:00
Simon Tatham
cfa3f8b192 PrimeCandidateSource: two extra query functions.
pcs_get_upper_bound lets the holder of a PrimeCandidateSource ask what
is the largest value it might ever generate. pcs_get_bits_remaining
lets it ask how much extra entropy it's going to generate on top of
the requirements that have already been input into it.

Both of these will be needed by the upcoming provable-prime work to
decide what sizes of subsidiary prime to generate.
2020-03-01 20:09:01 +00:00
Simon Tatham
18be6aec58 PrimeCandidateSource: remember prime factors of n-1.
We already had a function pcs_require_residue_1() which lets you ask
PrimeCandidateSource to ensure it only returns numbers congruent to 1
mod a given value. pcs_require_residue_1_mod_prime() is the same, but
it also records the number in a list of prime factors of n-1, which
can be queried later.

The idea is that if you're generating a DSA key, in which the small
prime q must divide p-1, the upcoming provable generation algorithm
will be able to recover q from the PrimeCandidateSource and use it as
part of the primality certificate, which reduces the number of bits of
extra prime factors it also has to make up.
2020-03-01 20:09:01 +00:00
Simon Tatham
2be70baa0d New 'Pockle' object, for verifying primality.
This implements an extended form of primality verification using
certificates based on Pocklington's theorem. You make a Pockle object,
and then try to convince it that one number after another is prime, by
means of providing it with a list of prime factors of p-1 and a
primitive root. (Or just by saying 'this prime is small enough for you
to check yourself'.)

Pocklington's theorem requires you to have factors of p-1 whose
product is at least the square root of p. I've extended that to
support factorisations only as big as the cube root, via an extension
of the theorem given in Maurer's paper on generating provable primes.

The Pockle object is more or less write-only: it has no methods for
reading out its contents. Its only output channel is the return value
when you try to insert a prime into it: if it isn't sufficiently
convinced that your prime is prime, it will return an error code. So
anything for which it returns POCKLE_OK you can be confident of.

I'm going to use this for provable prime generation. But exposing this
part of the system as an object in its own right means I can write a
set of unit tests for this specifically. My negative tests exercise
all the different ways a certification can be erroneous or inadequate;
the positive tests include proofs of primality of various primes used
in elliptic-curve crypto. The Poly1305 proof in particular is taken
from a proof in DJB's paper, which has exactly the form of a
Pocklington certificate only written in English.
2020-03-01 20:09:01 +00:00
Simon Tatham
20a9912c7c Add mp_copy_integer_into function.
Even simpler than the existing mp_add_integer_into.
2020-03-01 20:09:01 +00:00
Simon Tatham
6b27999500 Add mp_nthroot function.
This takes ordinary integer square and cube roots (i.e. not mod
anything) of mp_ints.
2020-03-01 20:09:01 +00:00
Simon Tatham
ece788240c Introduce a vtable system for prime generation.
The functions primegen() and primegen_add_progress_phase() are gone.
In their place is a small vtable system with two methods corresponding
to them, plus the usual admin of allocating and freeing contexts.

This API change is the starting point for being able to drop in
different prime generation algorithms at run time in response to user
configuration.
2020-03-01 20:09:01 +00:00
Simon Tatham
08a3547bc5 Rework PrimeCandidateSource without the delta system.
Now we don't even bother with picking an mp_int base value and a small
adjustment; we just generate a random mp_int, and if it's congruent to
anything we want to avoid, throw it away and try again.

This should cause us to select completely uniformly from the candidate
values in the available range. Previously, the delta system was
introducing small skews at the start and end of the range (values very
near there were less likely to turn up because they fell within the
delta radius of a smaller set of base values).

I was worried about doing this because I thought it would be slower,
because of having to do a big pile of 'reduce mp_int mod small thing'
every time round the loop: the virtue of the delta system is that you
can set up the residues of your base value once and then try several
deltas using only normal-sized integer operations. But now I look more
closely, we were computing _all_ the residues of the base point every
time round the loop (several thousand of them), whereas now we're very
likely to be able to throw a candidate away after only two or three if
it's divisible by one of the smallest primes, which are also the ones
most likely to get in the way. So probably it's actually _faster_ than
the old system (although, since uniformity was my main aim, I haven't
timed it, only noticed that it seems to be fast _enough_).
2020-03-01 17:54:16 +00:00
Simon Tatham
8b672835c1 DSA key gen: start from 2 when looking for g.
Having just written a comment about how it was almost inconceivably
improbable that you _wouldn't_ be successful in finding a suitable g
on the very first number you tried, I couldn't help noticing that in
fact my very next DSA key generation test had to try twice. Had I made
a mistake in my probability theory?

No, it turns out: I find g by raising consecutive numbers to the power
(p-1)/q and looking to see if they're not 1, but I start with 1
itself, which along with -1 is the only number that _can't_ work!

Save a bit of pointless effort and iterate up from 2 instead.
2020-03-01 08:31:10 +00:00
Simon Tatham
a7f409eb61 Fix VS 2015 build failure.
Thanks to Pavel Kryukov's CI for pointing this out: VS 2015 doesn't
support C99 hex floating-point literals.

(VS 2017 does, and in general we're treating this as a C99-permitted
code base these days. So I was tempted to just increase the minimum
required compiler version and leave this code as it is. But since the
use of that particular floating literal was so totally frivolous and
unnecessary, I think I'll leave that for another day when it's more
important!)
2020-03-01 08:31:07 +00:00
Simon Tatham
750f5222b2 Factor out Miller-Rabin checking into its own file.
This further cleans up the prime-generation code, to the point where
the main primegen() function has almost nothing in it. Also now I'll
be able to reuse M-R as a primitive in more sophisticated alternatives
to primegen().
2020-02-29 16:53:34 +00:00
Simon Tatham
79d3c1783b New vtable API for keygen progress reporting.
The old API was one of those horrible things I used to do when I was
young and foolish, in which you have just one function, and indicate
which of lots of things it's doing by passing in flags. It was crying
out to be replaced with a vtable.

While I'm at it, I've reworked the code on the Windows side that
decides what to do with the progress bar, so that it's based on
actually justifiable estimates of probability rather than magic
integer constants.

Since computers are generally faster now than they were at the start
of this project, I've also decided there's no longer any point in
making the fixed final part of RSA key generation bother to report
progress at all. So the progress bars are now only for the variable
part, i.e. the actual prime generations.

(This is a reapplication of commit a7bdefb39, without the Miller-Rabin
refactoring accidentally folded into it. Also this time I've added -lm
to the link options, which for some reason _didn't_ cause me a link
failure last time round. No idea why not.)
2020-02-29 16:53:34 +00:00
Simon Tatham
62733a8389 Revert "New vtable API for keygen progress reporting."
This reverts commit a7bdefb394.

I had accidentally mashed it together with another commit. I did
actually want to push both of them, but I'd rather push them
separately! So I'm backing out the combined blob, and I'll re-push
them with their proper comments and explanations.
2020-02-29 16:32:16 +00:00
Simon Tatham
a7bdefb394 New vtable API for keygen progress reporting.
The old API was one of those horrible things I used to do when I was
young and foolish, in which you have just one function, and indicate
which of lots of things it's doing by passing in flags. It was crying
out to be replaced with a vtable.

While I'm at it, I've reworked the code on the Windows side that
decides what to do with the progress bar, so that it's based on
actually justifiable estimates of probability rather than magic
integer constants.

Since computers are generally faster now than they were at the start
of this project, I've also decided there's no longer any point in
making the fixed final part of RSA key generation bother to report
progress at all. So the progress bars are now only for the variable
part, i.e. the actual prime generations.
2020-02-29 14:18:06 +00:00
Simon Tatham
63b8f537f2 New API for primegen(), using PrimeCandidateSource.
The more features and options I add to PrimeCandidateSource, the more
cumbersome it will be to replicate each one in a command-line option
to the ultimate primegen() function. So I'm moving to an API in which
the client of primegen() constructs a PrimeCandidateSource themself,
and passes it in to primegen().

Also, changed the API for pcs_new() so that you don't have to pass
'firstbits' unless you really want to. The net effect is that even
though we've added flexibility, we've also simplified the call sites
of primegen() in the simple case: if you want a 1234-bit prime, you
just need to pass pcs_new(1234) as the argument to primegen, and
you're done.

The new declaration of primegen() lives in ssh_keygen.h, along with
all the types it depends on. So I've had to #include that header in a
few new files.
2020-02-29 13:55:41 +00:00
Simon Tatham
809a4eb249 testcrypt.py: avoid restarting subprocess for frees.
I just ran into a bug in which the testcrypt child process was cleanly
terminated, but at least one Python object was left lying around
containing the identifier of a testcrypt object that had never been
freed. On program exit, the Python reference count on that object went
to zero, the __del__ method was invoked, and childprocess.funcall
started a _new_ instance of testcrypt just so it could tell it to free
the object identifier - which, of course, the new testcrypt had never
heard of!

We can already tell the difference between a ChildProcess object which
has no subprocess because it hasn't yet been started, and one which
has no subprocess because it's terminated: the latter has exitstatus
set to something other than None. So now we enforce by assertion that
we don't ever restart the child process, and the __del__ method avoids
doing anything if the child has already finished.
2020-02-29 12:13:32 +00:00
Simon Tatham
db7a314c38 testcrypt.py: fake some OO syntax.
When I'm writing Python using the testcrypt API, I keep finding that I
instinctively try to call vtable methods as if they were actual
methods of the object. For example, calling key.sign(msg, 0) instead
of ssh_key_sign(key, msg, 0).

So this change to the Python side of the testcrypt mechanism panders
to my inappropriate finger-macros by making them work! The idea is
that I define a set of pairs (type, prefix), such that any function
whose name begins with the prefix and whose first argument is of that
type will be automatically translated into a method on the Python
object wrapping a testcrypt value of that type. For example, any
function of the form ssh_key_foo(val_ssh_key, other args) will
automatically be exposed as a method key.foo(other args), simply
because (val_ssh_key, "ssh_key_") appears in the translation table.

This is particularly nice for the Python 3 REPL, which will let me
tab-complete the right set of method names by knowing the type I'm
trying to invoke one on. I haven't decided yet whether I want to
switch to using it throughout cryptsuite.py.

For namespace-cleanness, I've also renamed all the existing attributes
of the Python Value class wrapper so that they start with '_', to
leave the space of sensible names clear for the new OOish methods.
2020-02-29 12:13:32 +00:00
Jacob Nevins
e025ccc2f0 Add official kex name "curve25519-sha256".
As a simple alias for "curve25519-sha256@libssh.org". This name is now
standardised in RFC8731 (and, since 7751657811, we have the extra
validation mandated by the RFC compared to the libssh spec); also it's
been in OpenSSH at least for ages (since 7.4, 2016-12, 0493766d56).
2020-02-29 09:59:12 +00:00
Simon Tatham
7751657811 Reject all low-order points in Montgomery key exchange.
This expands our previous check for the public value being zero, to
take in all the values that will _become_ zero after not many steps.

The actual check at run time is done using the new is_infinite query
method for Montgomery curve points. Test cases in cryptsuite.py cover
all the dangerous values I generated via all that fiddly quartic-
solving code.

(DJB's page http://cr.yp.to/ecdh.html#validate also lists these same
constants. But working them out again for myself makes me confident I
can do it again for other similar curves, such as Curve448.)

In particular, this makes us fully compliant with RFC 7748's demand to
check we didn't generate a trivial output key, which can happen if the
other end sends any of those low-order values.

I don't actually see why this is a vital check to perform for security
purposes, for the same reason that we didn't classify the bug
'diffie-hellman-range-check' as a vulnerability: I can't really see
what the other end's incentive might be to deliberately send one of
these nonsense values (and you can't do it by accident - none of these
values is a power of the canonical base point). It's not that a DH
participant couldn't possible want to secretly expose the session
traffic - but there are plenty of more subtle (and less subtle!) ways
to do it, so you don't really gain anything by forcing them to use one
of those instead. But the RFC says to check, so we check.
2020-02-28 20:48:52 +00:00
Simon Tatham
1cad3c8255 eccref.py: find low-order points on Montgomery curves.
This uses the new quartic-solver mod p to generate all the values in
Curve25519 that can end up at the curve identity by repeated
application of the doubling formula.
2020-02-28 20:40:08 +00:00
Simon Tatham
f82af9ffe2 numbertheory.py: cubic and quartic solver mod p.
I'm going to want to use this for finding special values in elliptic
curves' ground fields.

In order to solve cubics and quartics in F_p, you have to work in
F_{p^2}, for much the same reasons that you have to be willing to use
complex numbers if you want to solve general cubics over the reals
(even if all the eventual roots turn out to be real after all). So
I've also introduced another arithmetic class to work in that kind of
field, and a shim that glues that on to the cyclic-group root finder
from the previous commit.
2020-02-28 20:40:08 +00:00
Simon Tatham
072d3c665a numbertheory.py: generalise SqrtModP to do other roots.
I'm about to want to solve quartics mod a prime, which means I'll need
to be able to take cube roots mod p as well as square roots.

This commit introduces a more general class which can take rth roots
for any prime r, and moreover, it can do it in a general cyclic group.
(You have to tell it the group's order and give it some primitives for
doing arithmetic, plus a way of iterating over the group elements that
it can use to look for a non-rth-power and roots of unity.)

That system makes it nicely easy to test, because you can give it a
cyclic group represented as the integers under _addition_, and then
you obviously know what all the right answers are. So I've also added
a unit test system checking that.
2020-02-28 20:40:08 +00:00
Simon Tatham
7be2e16023 numbertheory.py: make the ModP class hashable.
That will let me keep them in sets.
2020-02-28 20:40:08 +00:00
Simon Tatham
3ee9b92935 numbertheory.py: factor out invert().
I'm about to want to reuse it.
2020-02-28 20:40:08 +00:00
Simon Tatham
122d785283 eccref.py: move support routines into a new file.
I'm about to want to expand the underlying number-theory code, so I'll
start by moving it into a file where it has room to grow without
swamping the main purpose of eccref.py.
2020-02-28 20:40:08 +00:00
Simon Tatham
c9a8fa639e New query function ecc_montgomery_is_identity.
To begin with, this allows me to add a regression test for the change
in the previous commit.
2020-02-28 20:40:08 +00:00
Simon Tatham
141b75a71a Preserve zero denominators in ECC point normalisation.
ecc_montgomery_normalise takes a point with X and Z coordinates, and
normalises it to Z=1 by means of multiplying X by the inverse of Z and
then setting Z=1.

If you pass in a point with Z=0, representing the curve identity, then
it would be nice to still get the identity back out again afterwards.
We haven't really needed that property until now, but I'm about to
want it.

Currently, what happens is that we try to invert Z mod p; fail, but
don't notice we've failed, and come out with some nonsense value as
the inverse; multiply X by that; and then _set Z to 1_. So the output
value no longer has Z=0.

This commit changes things so that we multiply Z by the inverse we
computed. That way, if Z started off 0, it stays 0.

Also made the same change in the other two curve types, on general
principles, though I don't yet have a use for that.
2020-02-28 20:40:08 +00:00
Simon Tatham
0645824e4d eccref.py: handle order-2 points in Montgomery curves.
If a point doubles to the identity, we should return the identity,
rather than throwing a Python divide-by-zero exception.
2020-02-28 20:40:08 +00:00
Simon Tatham
027f1c67ec Switch to running cryptsuite.py under Python 3.
I'm getting tired of maintaining it as 2/3 compatible; 2 is on the way
out anyway and I'm losing patience. In future, if it breaks in 2, I
think I'm going to stop caring.
2020-02-28 20:40:08 +00:00
Jacob Nevins
cc57ae74cc Fix typo in comment. 2020-02-26 08:35:17 +00:00
Simon Tatham
3a633bed35 Fix a deadlock in SFTP upload.
I tried to do an SFTP upload through connection sharing the other day
and found that pscp sent some data and then hung. Now I debug it, what
seems to have happened was that we were looping in sftp_recv() waiting
for an SFTP packet from the remote, but we didn't have any outstanding
SFTP requests that the remote was going to reply to. Checking further,
xfer_upload_ready() reported true, so we _could_ have sent something -
but the logic in the upload loop had a hole through which we managed
to get into 'waiting for a packet' state.

I think what must have happened is that xfer_upload_ready() reported
false so that we entered sftp_recv(), but then the event loop inside
sftp_recv() ran a toplevel callback that made xfer_upload_ready()
return true. So, the fix: sftp_recv() is our last-ditch fallback, and
we always try emptying our callback queue and rechecking upload_ready
before we resort to waiting for a remote packet.

This not only fixes the hang I observed: it also hugely improves the
upload speed. My guess is that the bug must have been preventing us
from filling our outgoing request pipeline a _lot_ - but I didn't
notice it until the one time the queue accidentally ended up empty,
rather than just sparse enough to make transfers slow.

Annoyingly, I actually considered this fix back when I was trying to
fix the proftpd issue mentioned in commit cd97b7e7e. I decided fixing
ssh_sendbuffer() was a better idea. In fact it would have been an even
better idea to do both! Oh well, better late than never.
2020-02-25 21:31:24 +00:00
Simon Tatham
aba52744e4 primegen: fix a small memory leak.
There's always one.
2020-02-23 18:34:18 +00:00