1
0
mirror of https://git.tartarus.org/simon/putty.git synced 2025-03-13 10:33:51 -05:00
Simon Tatham 22b492c4f6 New protocol: PROT_SSHCONN, bare ssh-connection.
This is the same protocol that PuTTY's connection sharing has been
using for years, to communicate between the downstream and upstream
PuTTYs. I'm now promoting it to be a first-class member of the
protocols list: if you have a server for it, you can select it in the
GUI or on the command line, and write out a saved session that
specifies it.

This would be completely insecure if you used it as an ordinary
network protocol, of course. Not only is it non-cryptographic and wide
open to eavesdropping and hijacking, but it's not even _authenticated_
- it begins after the userauth phase of SSH. So there isn't even the
mild security theatre of entering an easy-to-eavesdrop password, as
there is with, say, Telnet.

However, that's not what I want to use it for. My aim is to use it for
various specialist and niche purposes, all of which involve speaking
it over an 8-bit-clean data channel that is already set up, secured
and authenticated by other methods. There are lots of examples of such
channels:

 - a userv(1) invocation
 - the console of a UML kernel
 - the stdio channels into other kinds of container, such as Docker
 - the 'adb shell' channel (although it seems quite hard to run a
   custom binary at the far end of that)
 - a pair of pipes between PuTTY and a Cygwin helper process
 - and so on.

So this protocol is intended as a convenient way to get a client at
one end of any those to run a shell session at the other end. Unlike
other approaches, it will give you all the SSH-flavoured amenities
you're already used to, like forwarding your SSH agent into the
container, or forwarding selected network ports in or out of it, or
letting it open a window on your X server, or doing SCP/SFTP style
file transfer.

Of course another way to get all those amenities would be to run an
ordinary SSH server over the same channel - but this approach avoids
having to manage a phony password or authentication key, or taking up
your CPU time with pointless crypto.
2020-02-22 18:42:13 +00:00
2019-02-20 07:27:22 +00:00
2020-01-30 06:40:21 +00:00
2020-02-02 10:02:10 +00:00
2020-01-01 16:54:24 +00:00
2020-01-29 06:44:18 +00:00
2020-01-29 06:44:18 +00:00
2020-01-30 06:40:21 +00:00
2020-01-29 06:44:18 +00:00
2020-01-29 06:44:18 +00:00
2019-02-26 07:12:57 +00:00
2020-01-30 06:40:22 +00:00
2020-01-30 06:40:21 +00:00
2017-09-13 19:26:28 +01:00
2018-09-19 23:08:07 +01:00
2020-01-29 06:44:18 +00:00
2019-10-14 19:42:37 +01:00
2019-12-15 20:23:06 +00:00
2020-01-29 06:44:18 +00:00
2019-12-15 20:23:06 +00:00
2020-01-29 06:44:18 +00:00

This is the README for the source archive of PuTTY, a free Windows
and Unix Telnet and SSH client.

If you want to rebuild PuTTY from source, we provide a variety of
Makefiles and equivalents. (If you have fetched the source from
Git, you'll have to generate the Makefiles yourself -- see
below.)

There are various compile-time directives that you can use to
disable or modify certain features; it may be necessary to do this
in some environments. They are documented in `Recipe', and in
comments in many of the generated Makefiles.

For building on Windows:

 - windows/Makefile.vc is for command-line builds on MS Visual C++
   systems. Change into the `windows' subdirectory and type `nmake
   -f Makefile.vc' to build all the PuTTY binaries.

   As of 2017, we successfully compile PuTTY with both Visual Studio
   7 (2003) and Visual Studio 14 (2015), so our guess is that it will
   probably build with versions in between those as well.

   (The binaries from Visual Studio 14 are only compatible with
   Windows XP and up. Binaries from Visual Studio 7 ought to work
   with anything from Windows 95 onward.)

 - Inside the windows/MSVC subdirectory are MS Visual Studio project
   files for doing GUI-based builds of the various PuTTY utilities.
   These have been tested on Visual Studio 7 and 10.

   You should be able to build each PuTTY utility by loading the
   corresponding .dsp file in Visual Studio. For example,
   MSVC/putty/putty.dsp builds PuTTY itself, MSVC/plink/plink.dsp
   builds Plink, and so on.

 - windows/Makefile.mgw is for MinGW / Cygwin installations. Type
   `make -f Makefile.mgw' while in the `windows' subdirectory to
   build all the PuTTY binaries.

   MinGW and friends can lag behind other toolchains in their support
   for the Windows API. Compile-time levers are provided to exclude
   some features; the defaults are set appropriately for the
   'mingw-w64' cross-compiler provided with Ubuntu 14.04. If you are
   using an older toolchain, you may need to exclude more features;
   alternatively, you may find that upgrading to a recent version of
   the 'w32api' package helps.

 - windows/Makefile.lcc is for lcc-win32. Type `make -f
   Makefile.lcc' while in the `windows' subdirectory. (You will
   probably need to specify COMPAT=-DNO_MULTIMON.)

 - Inside the windows/DEVCPP subdirectory are Dev-C++ project
   files for doing GUI-based builds of the various PuTTY utilities.

The PuTTY team actively use Makefile.vc (with VC7/10) and Makefile.mgw
(with mingw32), so we'll probably notice problems with those
toolchains fairly quickly. Please report any problems with the other
toolchains mentioned above.

For building on Unix:

 - unix/configure is for Unix and GTK. If you don't have GTK, you
   should still be able to build the command-line utilities (PSCP,
   PSFTP, Plink, PuTTYgen) using this script. To use it, change into
   the `unix' subdirectory, run `./configure' and then `make'. Or you
   can do the same in the top-level directory (we provide a little
   wrapper that invokes configure one level down), which is more like
   a normal Unix source archive but doesn't do so well at keeping the
   per-platform stuff in each platform's subdirectory; it's up to you.

 - unix/Makefile.gtk and unix/Makefile.ux are for non-autoconfigured
   builds. These makefiles expect you to change into the `unix'
   subdirectory, then run `make -f Makefile.gtk' or `make -f
   Makefile.ux' respectively. Makefile.gtk builds all the programs but
   relies on Gtk, whereas Makefile.ux builds only the command-line
   utilities and has no Gtk dependence.

 - For the graphical utilities, any of Gtk+-1.2, Gtk+-2.0, and Gtk+-3.0
   should be supported. If you have more than one installed, you can
   manually specify which one you want by giving the option
   '--with-gtk=N' to the configure script where N is 1, 2, or 3.
   (The default is the newest available, of course.) In the absence
   of any Gtk version, the configure script will automatically
   construct a Makefile which builds only the command-line utilities;
   you can manually create this condition by giving configure the
   option '--without-gtk'.

 - pterm would like to be setuid or setgid, as appropriate, to permit
   it to write records of user logins to /var/run/utmp and
   /var/log/wtmp. (Of course it will not use this privilege for
   anything else, and in particular it will drop all privileges before
   starting up complex subsystems like GTK.) By default the makefile
   will not attempt to add privileges to the pterm executable at 'make
   install' time, but you can ask it to do so by running configure
   with the option '--enable-setuid=USER' or '--enable-setgid=GROUP'.

 - The Unix Makefiles have an `install' target. Note that by default
   it tries to install `man' pages; if you have fetched the source via
   Git then you will need to have built these using Halibut
   first - see below.

 - It's also possible to build the Windows version of PuTTY to run
   on Unix by using Winelib.  To do this, change to the `windows'
   directory and run `make -f Makefile.mgw CC=winegcc RC=wrc'.

All of the Makefiles are generated automatically from the file
`Recipe' by the Perl script `mkfiles.pl' (except for the Unix one,
which is generated by the `configure' script; mkfiles.pl only
generates the input to automake). Additions and corrections to Recipe,
mkfiles.pl and/or configure.ac are much more useful than additions and
corrections to the actual Makefiles, Makefile.am or Makefile.in.

The Unix `configure' script and its various requirements are generated
by the shell script `mkauto.sh', which requires GNU Autoconf, GNU
Automake, and Gtk; if you've got the source from Git rather
than using one of our source snapshots, you'll need to run this
yourself. The input file to Automake is generated by mkfiles.pl along
with all the rest of the makefiles, so you will need to run mkfiles.pl
and then mkauto.sh.

Documentation (in various formats including Windows Help and Unix
`man' pages) is built from the Halibut (`.but') files in the `doc'
subdirectory using `doc/Makefile'. If you aren't using one of our
source snapshots, you'll need to do this yourself. Halibut can be
found at <https://www.chiark.greenend.org.uk/~sgtatham/halibut/>.

The PuTTY home web site is

    https://www.chiark.greenend.org.uk/~sgtatham/putty/

If you want to send bug reports or feature requests, please read the
Feedback section of the web site before doing so. Sending one-line
reports saying `it doesn't work' will waste your time as much as
ours.

See the file LICENCE for the licence conditions.
Description
No description provided
Readme 340 MiB
Languages
C 89.7%
Python 8%
Perl 0.9%
CMake 0.8%
Shell 0.4%
Other 0.1%